Мой ответ. Учёным известно порядка 500 аминокислот. Около 240 из них в природе бывают в свободном виде, а остальные - в промежуточном - как продукты обмена веществ.
На сегодняшний день в организме человека обнаружено 26 аминокислот.
В образовании белка, считается, принимают участие 22 аминокислоты (21 - селеноцистеин, 22 - пирролизин (стандартные протеиногенные аминокислоты). https://ru.wikipedia.org/wiki/
Все аминокислоты можно разделить на две группы: незаменимые (поступают в организм извне) и заменимые (синтезируются в организме). Но есть ещё и третья, и четвёртая группа - частично заменимые и условно незаменимые. Но это разделение весьма условно. Вообще, чтобы производить такие "подсчёты", необходимо учитывать, о какаких именно организмах идёт речь.
Для взрослого здорового человека незаменимые аминокислоты: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин, селеноцистеин, пирролизин. Это 10 незаменимых аминокислот. Также часто к незаменимым относят гистидин. Это 11 аминокислота. Для детей также незаменимым является аргинин. Итого насчитывается 12 аминокислот незаменимых для человека.
Новорождённые дети и больные люди не могут вырабатывать некоторые аминокислоты. Эти аминокислоты считаются условно незаменимыми. К ним относятся: тирозин, цистеин. Они могут синтезироваться в организме, но при наличии других аминокислот.
Частично заменимые - их организм синтезирует, но мало. Это аргинин и гистидин. Как видим, аргинин и гистидин по другим классификациям относят к незаменимым, а ещё по другим - условно заменимым. А иногда и условно незаменимые, и частично заменимые объединяют в одну группу.
К заменимым аминокислотам принято относить: аланин, аспарагин, аспарагиновая кислота (аспартат), глицин, цистеин, глютамин, глютаминовая кислота (глютамат), пролин, серин, таурин*, тирозин. Насчитывается 11 заменимых аминокислот.
*Таурин выполняет некоторые функции аминокислот, но по строению к ним не относится.
Таким образом, мнение, что существуют 20 аминокислот, из которых 8 незаменимые, является неверным.
yandex.ru
Мой ответ. Учёным известно порядка 500 аминокислот. Около 240 из них в природе бывают в свободном виде, а остальные - в промежуточном - как продукты обмена веществ.
На сегодняшний день в организме человека обнаружено 26 аминокислот.
В образовании белка, считается, принимают участие 22 аминокислоты (21 - селеноцистеин, 22 - пирролизин (стандартные протеиногенные аминокислоты). https://ru.wikipedia.org/wiki/
Все аминокислоты можно разделить на две группы: незаменимые (поступают в организм извне) и заменимые (синтезируются в организме). Но есть ещё и третья, и четвёртая группа - частично заменимые и условно незаменимые. Но это разделение весьма условно. Вообще, чтобы производить такие "подсчёты", необходимо учитывать, о какаких именно организмах идёт речь.
Для взрослого здорового человека незаменимые аминокислоты: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин, селеноцистеин, пирролизин. Это 10 незаменимых аминокислот. Также часто к незаменимым относят гистидин. Это 11 аминокислота. Для детей также незаменимым является аргинин. Итого насчитывается 12 аминокислот незаменимых для человека.
Новорождённые дети и больные люди не могут вырабатывать некоторые аминокислоты. Эти аминокислоты считаются условно незаменимыми. К ним относятся: тирозин, цистеин. Они могут синтезироваться в организме, но при наличии других аминокислот.
Частично заменимые - их организм синтезирует, но мало. Это аргинин и гистидин. Как видим, аргинин и гистидин по другим классификациям относят к незаменимым, а ещё по другим - условно заменимым. А иногда и условно незаменимые, и частично заменимые объединяют в одну группу.
К заменимым аминокислотам принято относить: аланин, аспарагин, аспарагиновая кислота (аспартат), глицин, цистеин, глютамин, глютаминовая кислота (глютамат), пролин, серин, таурин*, тирозин. Насчитывается 11 заменимых аминокислот.
*Таурин выполняет некоторые функции аминокислот, но по строению к ним не относится.
Таким образом, мнение, что существуют 20 аминокислот, из которых 8 незаменимые, является неверным.
yandex.ru
Схема генетического кода
Генети́ческий код (англ. Genetic code) — совокупность правил, согласно которым в живых клетках последовательность нуклеотидов (ген и мРНК) переводится в последовательность аминокислот (белок). Собственно перевод (трансляцию) осуществляет рибосома, которая соединяет аминокислоты в цепочку согласно инструкции, записанной в кодонах мРНК. Соответствующие аминокислоты доставляются в рибосому молекулами тРНК. Генетический код всех живых организмов Земли един (имеются лишь незначительные вариации), что свидетельствует о наличии общего предка.
Правила генетического кода определяют, какой аминокислоте соответствует триплет (три подряд идущих нуклеотида) в мРНК. За редкими исключениями[1], каждому кодону соответствует только одна аминокислота. Конкретная аминокислота может кодироваться более чем одним кодоном, есть также кодоны, означающие начало и конец белка. Вариант генетического кода, который используется подавляющим большинством живых организмов, называют стандартным, или каноническим, генетическим кодом. Однако известно несколько десятков исключений из стандартного генетического кода, например, при трансляции в митохондриях используются несколько изменённые правила генетического кода.
Простейшим представлением генетического кода может служить таблица из 64 ячеек, в которой каждая ячейка соответствует одному из 64 возможных кодонов[2].
Попытки понять, каким образом последовательность ДНК кодирует аминокислотную последовательность белков, начали предприниматься почти сразу же после того, как в 1953 году была установлена структура ДНК (двойная спираль[en]). Георгий Гамов предположил, что кодоны должны состоять из трёх нуклеотидов, чтобы кодонов хватило для всех 20 аминокислот (всего же возможно 64 различных кодона из трёх нуклеотидов: на каждую из трёх позиций можно поставить один из четырёх нуклеотидов)[3].
В 1961 году триплетность генетического кода удалось подтвердить экспериментально. В том же году Маршалл Ниренберг и его коллега Генрих Маттеи[en] использовали бесклеточную систему для трансляции in vitro. В качестве матрицы был взят олигонуклеотид, состоящий из остатков урацила (UUUU…). Пептид, синтезированный с него, содержал только аминокислоту фенилаланин[4]. Так впервые было установлено значение кодона: кодон UUU кодирует фенилаланин. Дальнейшие правила соответствия между кодонами и аминокислотами были установлены в лаборатории Северо Очоа. Было показано, что полиадениновая РНК (ААА…) транслируется в полилизиновый пептид[5], а на матрице полицитозиновой РНК (ССС…) синтезируется пептид, состоящий только из остатков пролина[6]. Значение остальных кодонов было установлено при помощи разнообразных сополимеров в ходе экспериментов, проведённых в лаборатории Хара Гобинда Кораны. Вскоре после этого Роберт Холли установил структуру молекулы тРНК, которая служит посредником при трансляции. В 1968 году Ниренберг, Корана и Холли были удостоены Нобелевской премии по физиологии и медицине[7].
После установления правил генетического кода многие учёные занялись его искусственными преобразованиями[en]. Так, начиная с 2001 года в генетический код были внедрены 40 аминокислот, которые в природе не входят в состав белков. Для каждой аминокислоты создавались свой кодон и соответствующая аминоацил-тРНК-синтетаза. Искусственное расширение генетического кода и создание белков с новыми аминокислотами могут помочь глубже изучить структуру белковых молекул, а также получить искусственные белки с заданными свойствами[8][9]. Х. Мураками и М. Сисидо смогли превратить некоторые кодоны из трёхнуклеотидных в четырёх- и пятинуклеотидные. Стивен Бреннер получил 65-й кодон, который был функционален in vivo[10].
В 2015 году у бактерии Escherichia coli удалось изменить значение всех кодонов UGG с триптофана на тиенопиррол-аланин, не встречающийся в природе[11]. В 2016 году был получен первый полусинтетический организм — бактерия, геном которой содержал два искусственных азотистых основания (X и Y), сохраняющихся при делении[12][13]. В 2017 году исследователи из Южной Кореи заявили о создании мыши с расширенным генетическим кодом, способной синтезировать белки с аминокислотами, не встречающимися в природе[14].
Рамки считывания в митохондриальной ДНК человека в области генов MT-ATP8[en] и MT-ATP6[en] (чёрным цветом показан участок между позициями 8525 и 8580). В направлении считывания 5' → 3' возможны три рамки считывания, начинающиеся с первой (+1), второй (+2) и третьей позиций (+3). Соответствие между кодонами (кодоны выделены квадратными скобками) определяется митохондриальным генетическим кодом позвоночных[en] в рамке +1 для MT-ATP8 (показана красным) или в рамке +3 для MT-ATP6 (показана синим). Ген MT-ATP8 заканчивается стоп-кодоном TAG (отмечен красной точкой) в рамке +1. Ген MT-ATP6 начинается с кодона ATG (кодирует аминокислоту метионин (М) и выделен синим кружком) в рамке +3Гены кодируются в направлении 5'→3' нуклеотидной последовательности[15]. Рамка считывания определяется самым первым триплетом, с которого начинается трансляция. Последовательность неперекрывающихся кодонов, начинающуюся со старт-кодона и заканчивающуюся стоп-кодоном, называют открытой рамкой считывания. Например, последовательность 5'-AAATGAACG-3' (см. рис.) при чтении с первого нуклеотида разбивается на кодоны AAA, TGA и ACG. Если чтение начинается со второго нуклеотида, то ей соответствуют кодоны AAT и GAA. Наконец, при чтении с третьего нуклеотида используются кодоны ATG и AAC. Таким образом, любую последовательность можно прочесть в направлении 5' → 3' тремя разными способами (с тремя разными рамками считывания), причём в каждом случае последовательность белкового продукта будет отличаться из-за распознавания рибосомой разных кодонов. Если учесть, что ДНК имеет двуцепочечную структуру, то возможны 6 рамок считывания: три на одной цепи и три на другой[16]. Однако считывание генов с ДНК не является случайным. Все другие рамки считывания в пределах одного гена обычно содержат многочисленные стоп-кодоны, чтобы быстро остановить и уменьшить метаболическую стоимость неправильного синтеза[17].
Трансляция информации с последовательности мРНК в аминокислотную последовательность начинается с так называемого старт-кодона — как правило, AUG, причём у эукариот он читается как метионин, а у бактерий — как формилметионин. Одного старт-кодона недостаточно для запуска трансляции; для него необходимы факторы инициации трансляции, а также особые элементы в соседних последовательностях, например, последовательность Шайна — Дальгарно у бактерий. У некоторых организмов в роли старт-кодонов используются кодоны GUG, который в норме кодирует валин, и UUG, который в стандартном коде соответствует лейцину[18].
После инициационного кодона трансляция продолжается через последовательное считывание кодонов и присоединение аминокислот друг к другу рибосомой до достижения сигнала к прекращению трансляции — стоп-кодона. Существуют три стоп-кодона, каждый из которых имеет своё название: UAG (янтарь), UGA (опал) и UAA (охра). Стоп-кодоны также называют терминаторными. В клетках нет тРНК, соответствующих стоп-кодонам, поэтому, когда рибосома доходит до стоп-кодона, вместо тРНК с ним взаимодействуют факторы терминации трансляции, которые гидролизуют последнюю тРНК от аминокислотной цепочки, а затем заставляют рибосому диссоциировать[19]. У бактерий в терминации трансляции принимают участие три белковых фактора[en]: RF-1, RF-2 и RF-3: RF-1 узнаёт кодоны UAG и UAA, а RF-2 распознаёт UAA и UGA. Фактор RF-3 выполняет вспомогательную работу. Трёхмерная структура RF-1 и RF-2 напоминает формой и распределением заряда тРНК и, таким образом, представляет собой пример молекулярной мимикрии[en][20]. У эукариот фактор терминации трансляции eRF1 распознаёт все три стоп-кодона. Зависимая от рибосомы ГТФаза eRF3, которую рассматривают как второй фактор терминации трансляции эукариот, помогает eRF1 в высвобождении с рибосомы готового полипептида[21][22][23].
Распределение стоп-кодонов в геноме организма неслучайно и может быть связано с GC-составом генома[24][25]. Например, у штамма E. coli K-12 в геноме имеется 2705 кодонов TAA (63 %), 1257 TGA (29 %) и 326 TAG (8 %) при GC-составе 50,8 %[26]. Масштабное исследование геномов разных видов бактерий показало, что доля кодона TAA положительно коррелирует с GC-составом, а доля TGA — отрицательно. Частота самого редко используемого стоп-кодона, TAG, не связана с GC-составом[27]. Сила стоп-кодонов также неодинакова. Спонтанный обрыв трансляции чаще всего происходит на кодоне UGA, а на UAA — реже всего[23].
Помимо собственно стоп-кодона, важнейшее значение для терминации трансляции имеет его окружение. Наиболее велика роль нуклеотида, расположенного сразу за стоп-кодоном (+4). Вероятно, нуклеотид +4 и другие нуклеотиды, следующие за ним, влияют на терминацию трансляции, обеспечивая сайты связывания факторов терминации трансляции. По этой причине некоторые исследователи предлагают рассматривать четырёхнуклеотидный стоп-сигнал вместо трёхнуклеотидного стоп-кодона. Нуклеотиды, расположенные выше стоп-кодонов, также влияют на трансляцию. Например, для дрожжей было показано, что аденин, располагающийся на 2 позиции выше первого нуклеотида стоп-кодона, стимулирует обрыв трансляции на стоп-кодоне UAG (возможно, и на остальных кодонах)[23].
Иногда стоп-кодоны выступают в роли смысловых. Например, кодон UGA кодирует нестандартную аминокислоту селеноцистеин, если рядом с ним в транскрипте находится так называемый SECIS-элемент[28]. Стоп-кодон UAG может кодировать другую нестандартную аминокислоту — пирролизин. Иногда стоп-кодон распознаётся как смысловой при мутациях, затрагивающих тРНК. Наиболее часто это явление наблюдается у вирусов, но оно также описано у бактерий, дрожжей, дрозофилы и человека, у которых играет регуляторную роль[29][30].
В ходе репликации ДНК изредка возникают ошибки при синтезе дочерней цепи. Эти ошибки, называемые мутациями, могут повлиять на фенотип организма, особенно если они затрагивают кодирующую область гена. Ошибки происходят с частотой 1 на каждые 10—100 миллионов пар оснований (п. о.), так как ДНК-полимеразы могут эффективно исправлять свои ошибки[31][32].
Под точечными мутациями понимают единичные замены одного азотистого основания. Если новое основание относится к тому же классу, что и исходное (оба пурины или оба пиримидины), то мутацию относят к транзициям. Если происходит замена пурина на пиримидин или пиримидина на пурин, то говорят о трансверсиях[en]. Транзиции встречаются чаще трансверсий[33]. Примерами точечных мутаций являются миссенс- и нонсенс-мутации. Они могут вызывать такие заболевания, как серповидноклеточная анемия и талассемия соответственно[34][35]. Клинически значимые миссенс-мутации приводят к замене аминокислотного остатка на остаток с другими физико-химическими свойствами, а нонсенс-мутации заключаются в появлении преждевременного стоп-кодона[16].
Мутации, при которых нарушается правильная рамка считывания из-за вставок и делеций (в совокупности они называются инделами[en]), содержащих некратное трём число нуклеотидов, называются мутациями сдвига рамки считывания. При этих мутациях белковый продукт получается совершенно иной, чем в диком типе. Как правило, при сдвигах рамки считывания появляются преждевременные стоп-кодоны, которые вызывают образование усечённых белков[36]. Поскольку эти мутации значительно нарушают функцию белка, они довольно редко закрепляются отбором: нередко отсутствие белка приводит к гибели организма ещё до рождения[37]. Мутации сдвига рамки считывания связаны с такими заболеваниями, как болезнь Тея — Сакса[38].
Хотя подавляющее число мутаций вредны или нейтральны[en], некоторые оказываются полезными[39]. Они могут давать организму лучшую приспособленность по сравнению с диким типом к определённым условиям окружающей среды или дают ему возможность размножаться быстрее особей дикого типа. В этом случае мутация будет постепенно распространяться в популяции в ходе нейтрального отбора[40]. Вирусы, геномы которых представлены РНК, мутируют очень быстро[41], что нередко приносит им пользу, потому что иммунная система, эффективно распознающая одни варианты вирусных антигенов, оказывается бессильна против слегка изменённых[42]. В больших популяциях организмов, размножающихся бесполым путём, например, E. coli, одновременно может происходить несколько полезных мутаций. Этот феномен получил название клональной интерференции[en] и вызывает конкуренцию между мутациями[43].
Способность разных кодонов кодировать одну аминокислоту называется вырожденностью кода. Впервые генетический код назвали вырожденным[en] Ниренберг и Бернфилд. Однако, несмотря на вырожденность, в генетическом коде полностью отсутствует двусмысленность. Например, кодоны GAA и GAG оба кодируют глутамат, но ни один из них не кодирует одновременно ещё какую-то аминокислоту. Кодоны, соответствующие одной аминокислоте, могут различаться по любым позициям, однако чаще всего две первые позиции у таких кодонов совпадают, а различается только последняя. Благодаря этому мутация, затронувшая третью позицию кодона, скорее всего, не скажется на белковом продукте[44].
Эта особенность может быть объяснена гипотезой неоднозначной пары оснований, предложенной Франсисом Криком. Согласно этой гипотезе, третий нуклеотид в кодоне ДНК может быть не полностью комплементарен антикодону тРНК для компенсации несоответствия числа типов тРНК числу кодонов[45][46].
Кодоны близких по физико-химическим свойствам аминокислот также нередко похожи, благодаря чему мутации не приводят к значительным нарушениям белковой структуры. Так, кодоны NUN (N — любой нуклеотид) обычно кодируют гидрофобные аминокислоты. NCN кодируют маленькие аминокислоты с умеренной гидрофобностью, а NAN кодируют гидрофильные аминокислоты среднего размера. Генетический код устроен настолько оптимально с точки зрения гидрофобности, что математический анализ при помощи сингулярного разложения 12 переменных (4 нуклеотида на 3 позиции) даёт значимую корреляцию (0,95) для предсказания гидрофобности аминокислоты по её кодону[47]. На восемь аминокислот мутации по третьим позициям не влияют вообще, а мутации по второй позиции, как правило, приводят к замене на аминокислоту с совершенно другими физико-химическими свойствами. Однако наибольшее влияние на белковый продукт имеют мутации по первым позициям. Так, мутации, приводящие к замене заряженной аминокислоты на аминокислоту с противоположным зарядом, могут затрагивать только первую позицию, а вторую — никогда. Такая замена заряда, вероятнее всего, окажет сильный эффект на структуру белка[48].
В таблице ниже представлен генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5'- к 3'-концу мРНК. Приведены трёхбуквенные и однобуквенные обозначения аминокислот.
неполярный | полярный | основный | кислотный | (стоп-кодон) |
Ala/A | GCU, GCC, GCA, GCG | Leu/L | UUA, UUG, CUU, CUC, CUA, CUG |
---|---|---|---|
Arg/R | CGU, CGC, CGA, CGG, AGA, AGG | Lys/K | AAA, AAG |
Asn/N | AAU, AAC | Met/M | AUG |
Asp/D | GAU, GAC | Phe/F | UUU, UUC |
Cys/C | UGU, UGC | Pro/P | CCU, CCC, CCA, CCG |
Gln/Q | CAA, CAG | Ser/S | UCU, UCC, UCA, UCG, AGU, AGC |
Glu/E | GAA, GAG | Thr/T | ACU, ACC, ACA, ACG |
Gly/G | GGU, GGC, GGA, GGG | Trp/W | UGG |
His/H | CAU, CAC | Tyr/Y | UAU, UAC |
Ile/I | AUU, AUC, AUA | Val/V | GUU, GUC, GUA, GUG |
START | AUG | STOP | UAG, UGA, UAA |
В некоторых белках нестандартные аминокислоты кодируются стоп-кодонами в зависимости от наличия особой сигнальной последовательности в мРНК. Например, стоп-кодон UGA может кодировать селеноцистеин, а UAG — пирролизин. Селеноцистеин и пирролизин рассматривают как 21-ю и 22-ю протеиногенную аминокислоту соответственно. В отличие от селеноцистеина, у пирролизина есть собственная аминоацил-тРНК-синтетаза[50]. Хотя обычно генетический код, используемый клетками одного организма, фиксирован, архея Acetohalobium arabaticum[en] может переключаться с 20-аминокислотного кода на 21-аминокислотный (включая пирролизин) при разных условиях роста[51].
Существование отклонений от стандартного генетического кода предсказывалось ещё в 1970-х[52]. Первое отклонение было описано в 1979 году в митохондриях человека[53]. Впоследствии было описано ещё несколько альтернативных генетических кодов, слегка отличающихся от стандартного, в том числе альтернативные митохондриальные коды[54].
Например, у бактерий рода Mycoplasma стоп-кодон UGA кодирует триптофан, а у дрожжей из так называемой «CTG-клады» (в том числе патогенного вида Candida albicans) кодон CUG кодирует серин, а не лейцин, как в стандартном генетическом коде[55][56][57]. Поскольку вирусы используют тот же генетический код, что и клетки-хозяева, отклонения от стандартного генетического кода могут нарушить размножение вирусов[58]. Впрочем, некоторые вирусы, например, вирусы рода Totivirus[en], используют тот же альтернативный генетический код, что и организм-хозяин[59].
У бактерий и архей GUG и UUG нередко выступают старт-кодонами[60]. Некоторые отклонения от стандартного генетического кода есть и в ядерном геноме человека: так, в 4 % мРНК фермента малатдегидрогеназы один из стоп-кодонов кодирует триптофан или аргинин[61]. Значение стоп-кодона зависит от его окружения[30]. Отклонения в генетическом коде организма можно обнаружить, если найти в его геноме очень консервативные гены и сравнить их кодоны с соответствующими аминокислотами гомологичных белков близкородственных организмов. По такому принципу работает программа FACIL, которая рассчитывает, с какой частотой каждый кодон соответствует той или иной аминокислоте, а также определяет поддержку стоп-кодона и представляет результат в виде логотипа (LOGO)[62]. Впрочем, несмотря на все перечисленные отличия, генетические коды, используемые всеми организмами, в общих чертах схожи[63].
В таблице ниже перечислены известные на данный момент нестандартные генетические коды[64][65]. Насчитывают 23 нестандартных генетических кода, причём наиболее частым отличием от стандартного генетического кода является превращение стоп-кодона UGA в смысловой, кодирующий триптофан[66].
Список нестандартных генетических кодов
Биохимические свойства аминокислот | неполярная | полярная | основная | кислая | Терминация: стоп-кодон |
В геномах многих организмов наблюдается так называемое предпочтение кодонов, то есть частота встречаемости всех синонимичных кодонов, соответствующих определённой аминокислоте, неравна и для одних кодонов выше, чем для других[67][68]. Эволюционные основы возникновения предпочтения кодонов неясны. Согласно одной гипотезе, реже встречаются те кодоны, которые наиболее часто мутируют. Другая гипотеза утверждает, что предпочтение кодонов регулируется естественным отбором в пользу тех, которые обеспечивают наибольшую эффективность и точность экспрессии генов[6
ru.wikipedia.org
20 аминокислот – это важнейшие соединения для нашего организма. Именно из этих двадцать аминокислот синтезируются белки. Также этиаминокислоты имеют название протеиногенные, или природные. Эти самые 20 аминокислотзапрограммированны в генетическом коде всех организмов на планете, а их последовательность определяет уникальность форм жизни.
Природные аминокислоты
Аминокислоты являются своеобразными составляющими «кирпичиками» белков нашего организма. Все аминокислоты разделяют на незаменимые, заменимые, а также условно заменимые. Деление это производится в зависимости от способностей их производиться нашим организмом.
Незаменимые аминокислоты – вещества, которые не могут производиться человеческим организмом, а поступают с только продуктами питания. К числу незаменимых (жизненно важных) аминокислот относятся:
Условно незаменимые аминокислоты могут воспроизводиться организмом человека при определенных условиях. Так, например, выработка в организме условной незаменимой кислоты аргинин после тридцати лет значительно снижается. К условно незаменимым аминокислотам относят:
Заменимые аминокислоты синтезируются организмом. «Материалом» для них могут быть любые аминокислоты. К числу заменимых аминокислот принадлежат:
Незаменимыеаминокислоты организм воспроизводить не может, это значит, что они должны поступать с продуктами питания. Незаменимые для организма человекааминокислоты уже были перечислены выше, но для детей к числу незаменимых относятся еще две – гистидин, аргинин.
Источниками незаменимойаминокислоты валина могут быть зерновые и бобовые культуры, мясо, арахис и молочные продукты. Изолейцин поступает к нам в организм с куриным мясом, рыбой, куриным яйцом. Также эта незаменимаяаминокислота содержится в сое.
Незаменимую аминокислоту лейцин наш организм может получить из мяса, рыбы, куриного яйца и бурого риса. Аминокислота лизин также содержится в мясных продуктах, орехах, пшенице и рыбе.
Аминокислоту метионин можно получить из мясных и молочных продуктов, сои, чечевицы, бобовых культур и рыбы. Незаменимая аминокислота треонин поступает к нам в организм с молочными продуктами, бобовыми культурами и орехами
Незаменимая аминокислота триптофан поступает к нам с такими продуктами, как индейка, курица, бананы, сушеные финики, арахис, бананы, творог, молочные и молочнокислые продукты. Фенилаланин, еще одна незаменимая аминокислота, может образовываться в организме при распаде аспартама – синтетического сахарозаменителя, а также поступает к нам с бобовыми культурами, куриным и говяжьим мясом, молочными продуктами, творогом и орехами.
Аминокислота гистидин содержится преимущественно в лососе и тунце, а также в свиной вырезке и филе говядины, соевых бобах, чечевице и арахисе. Незаменимая аминокислота аргинин содержится в свинине, говядине, швейцарском сыре, йогурте, кунжуте и арахисе.
subscribe.ru
Список аминокислот встречающихся в природе состоит примерно из 300 наименований. Многие найдены только в определенных организмах, а некоторые из них – только в одном. В организме человека насчитывается около 60 различных аминокислот и их производных, но только 20 участвует во внутриклеточном синтезе белков (образование белков).
Аминокислоты (аминокарбо́новые кисло́ты; АМК) – органические соединения, содержащие аминогруппы (-NH2) и карбоксильные (-СООН) функциональные группы , а также боковую цепь (R-группу), специфичную для каждой аминокислоты.
Аминокислоты делятся на две группы: протеиногенные (входящие в состав белков – их 20) и непротеиногенные (не участвующие в образовании белков).
Рекомендуемый ежедневный прием аминокислот ВОЗВсемирная организация здравоохранения и в США. Таблица.
Аминокислоты | ВОЗ мг на кг массы тела | ВОЗ мг на 70 кг | США мг на кг массы тела |
---|---|---|---|
Гистидин (H) | 10 | 700 | 14 |
Изолейцин (I) | 20 | 1400 | 19 |
Лейцин (L) | 39 | 2730 | 42 |
Лизин (K) | 30 | 2100 | 38 |
Метионин (М) + Цистеин (C) | 10,4 + 4,1 (всего 15) | 1050 всего | 19 всего |
Фенилаланин (F) + Тирозин (Y) | 25 (всего) | 1750 всего | 33 всего |
Треонин (T) | 15 | 1050 | 20 |
Триптофан (W) | 4 | 280 | 5 |
Валин (V) | 26 | 1820 | 24 |
Аминокислота (аббревиатура): | Химическая формула: | |
---|---|---|
Аланин (Ala, A) | C3H7NO2 | Alanine |
Аргинин (Arg, R) | C6H14N4O2 | aRginine | Аспарагин (Asn, N) | C4H8N2O3 | asparagiNe | Аспарагиновая кислота (Asp, D) | C4H7NO4 | asparDic acid | Валин (Val, V) | C5H11NO2 | Valine | Гистидин (His, H) | C6H9N3O2 | Histidine | Глицин (Gly, G) | C2H5N1O2 | Glycine | Глутамин (Gln, Q) | С5Н10N2O3 | Q-tamine | Глутаминовая кислота (Glu, E) | C5H9NO4 | gluEtamic acid | Изолейцин (Ile, I) | C6H13O2N | Isoleucine | Лейцин (Leu, L) | C6H13NO2 | Leucine | Лизин (Lys, K) | C6H14N2O2 | before L | Метионин (Met, M) | C5H11NO2S | Methionine | Пролин (Pro, P) | C5H7NO3 | Proline | Серин (Ser, S) | C3H7NO3 | Serine | Тирозин (Tyr, Y) | C9H11NO3 | tYrosine | Треонин (Thr, T) | C4H9NO3 | Threonine | Триптофан (Trp, W) | C11H12N2O2 | tWo rings | Фенилаланин (Phe, F) | C9H11NO2 | Fenylalanine | Цистеин (Cys, C) | C3H7NO2S | Cysteine |
Гидроксипролин (Hyp, hP) | C5H9NO3 | |
Гидроксилизин (Hyl, hK) | C6H14N2O3 |
Структурные формулы 20 протеиногенных аминокислот
Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин; также часто к незаменимым относят гистидин; для детей также незаменимым является аргинин.
Валин.
Один из главных компонентов необходимых для обменных процессов происходящих в мышцах, роста и синтеза тканей тела. Отмечена эффективность валина при регенерации тканей, в том числе тканей печени в случае повреждения (например, при токсическом гепатите). Валин способствует поддержанию надлежащего азотного баланса. Опыты показали, что валин повышает мышечную координацию и понижает чувствительность организма к боли, жаре и холоду.
Изолейцин.
Одна из аминокислот, необходимых для синтеза гемоглобина. Изолейцин также стабилизирует и регулирует уровень сахара в крови, участвует в выработке гемоглобина, повышает выносливость, дает возможность правильно распределять энергию, способствует активному росту мышц. Без изолейцина невозможна работа не только мышечной, но и мозговой ткани.
Лейцин.
Стабилизирует уровень глюкозы в крови и стимулирует выделение гормона роста. Так же способствует заживлению ран, сращиванию костей, восстановлению кожи и мышц.
Лизин.
Одна из важных составляющих в производстве карнитина. Лизин активно участвует в выработке антител, гормонов и ферментов, способен увеличивать выносливость мышц, задействован в формировании коллагена (одного из основных белков опорно-двигательного аппарата), обеспечивает усвоение кальция.
Метионин.
Относится к антиоксидантам. Способствует понижению уровня холестерина оказывая положительное влияние на функционирование печени человека (усиливая выработку лецитина). Метионин важен в метаболизме жиров и белков, организм использует ее также для производства цистеина. Основной поставщик серы в организм, тем самым предотвращает заболевание кожи и ногтей, а так же влияет на рост волос.
Треонин.
Важная составляющая в синтезе пуринов, которые, в свою очередь, разлагают мочевину, побочный продукт синтеза белка. Так же необходима для формирования эластина и коллагена, эмали зубов. Треонин помогает обезвреживать токсины и предотвращает отложение жира в клетках печени.
Триптофан.
Является предшественником ниацина и серотонина (который, участвуя в мозговых процессах управляет аппетитом, сном, настроением и восприятием боли). Триптофан так же участвует в выработке мелатонина (гормона эпифиза – регулятора суточных ритмов), помогает бороться с бессонницей, состоянием беспокойства и депрессии, укрепляет иммунную систему. Совместно с Лизином борется за понижение уровня холестерина.
Фенилаланин.
Используется в организме для производства тирозина и трех важных гормонов – эпинефрина (адреналина), норэпинефрина и тироксина, а также нейромедиатора дофамина. Используется головным мозгом для производства норадреналина, который используется для передачи сигналов от нервных клеток к головному мозгу, поддерживает в состоянии бодрствования, уменьшает чувство голода, работает как антидепрессант и помогает улучшить работу памяти.
К условнонезаменимым относятся (4): гистидин, аланин, цистеин, тирозин.
Тирозин.
Используется организмом вместо фенилаланина при синтезе белка. Мозгом тирозин используется для выработки норэпинефрина, повышающего ментальный тонус. Результаты исследований показали, что тирозин может бороться с усталостью и стрессом, снизить тревожность и повысить общий тонус и настроение.
Цистеин.
Организм может использовать его вместо метионина для производства белка, при достаточном количество цистеина в рационе. В пищевой промышленности цистеин используют как антиоксидант для сохранения витамина С в готовых продуктах. Так же, цистеин стимулирует активность белых кровяных тел.
Гистидин.
Способствует росту и восстановлению тканей. Используется при лечении аллергий, ревматоидных артритов, язв и анемии.
Аланин.
Важный источник энергии для мышечных тканей, центральной нервной системы и головного мозга. Укрепляет иммунную систему путем выработки антител и активно участвует в процессах обмена углеводов и органических кислот.
Заменимыми являются (10): аргинин, аспарагин, глутамин, глутаминовая кислота, глицин, карнитин, орнитин, пролин, серин, таурин.
Аргинин.
Очищает печень. Л-Аргинин замедляет развития опухолей и раковых образований. Помогает выделению гормона роста, полезна при лечении расстройств и травм почек, способствует выработке спермы и укрепляет иммунную систему. Необходим для оптимального роста и синтеза протеина. Наличие Л-Аргинина в организме способствует приросту мышечной массы и снижению жировых запасов организма. Также полезен при расстройствах печени (цирроз печени).
Аспарагин.
Активно участвует в выводе аммиака, вредного для центральной нервной системы, повышает сопротивляемость усталости, участвует в преобразовании углеводов в мышечную энергию.
Глутамин.
Важен для повышении работоспособности мозга, нормализации уровня сахара, во время лечения импотенции или (и) алкоголизма, помогает бороться с усталостью, мозговыми расстройствами (эпилепсией, шизофренией и просто заторможенностью), необходим при лечении язвы желудка, и формирование здорового пищеварительного тракта. В мозгу преобразовывается в глутаминовую кислоту, важную для работы мозга.
При употреблении не следует путать глутамин с глутаминовой кислотой, по действию эти препараты отличаются друг от друга.
Глутаминовая кислота.
Производит окислительные процессы, происходящие в мозге. Улучшает умственные способности, повышает сопротивляемость усталости, способствует ускорению лечения язв.
В человеческом организме все заменимые аминокислоты проходят стадию превращения в глутаминовую кислоту.
Глицин.
Принимает активное участие в обеспечении кислородом, процесса образования новых клеток. Является важным участником выработки гормонов, отвечающих за усиление иммунной системы.
Карнитин.
Печень и почки вырабатывают карнитин в небольшом количестве из двух других аминокислот – лизина и метионина. Карнитин – транспортный агент жирных кислот в митохондриальный матрикс. Предотвращая прирост жировых запасов эта аминокислота важна для уменьшения веса, снижения риска сердечных заболеваний. Организм вырабатывает Карнитин только в присутствии достаточного количества лизина, железа и энзимов В19 и В69. Вегетарианцы более чувствительны к дефициту карнитина, так как в их рационе гораздо меньше лизина. Карнитин также повышает эффективность антиоксидантов – витаминов С и Е.
Считается, что для наилучшей утилизации жира дневная норма карнитина должна составлять 1500 миллиграммов.
Орнитин.
Орнитин способствует выработке гормона роста, который в комбинации с Л-Карнитином и Л-Аргинином способствует вторичному использованию излишков жира в обмене веществ. Необходим для работы печени и иммунной системы.
Пролин.
Является неотъемлемым компонентом коллагеновых белков (формируют основу всех тканей в организме человека), крайне важен для правильного функционирования связок и суставов, участвует в поддержании работоспособности и укреплении сердечной мышцы.
Серин.
Участвует в запасании печенью и мышцами гликогена; активно участвует в усилении иммунной системы, обеспечивая ее антителами; формирует жировые “чехлы” вокруг нервных волокон; стимулирует функции памяти и нервной системы.
Таурин.
Оказывает благоприятное влияние на сердечно-сосудистую систему. Стабилизирует возбудимость мембран, что очень важно для контроля эпилептических припадков. Таурин и сульфур считаются факторами, необходимыми при контроле множества биохимических изменений, имеющих место в процессе старения. Таурин играет значительную роль в энергообмене, участвует в освобождении организма от засорения свободными радикалами.
Несмотря на то, что самостоятельно организм не способен синтезировать незаменимые аминокислоты, их недостаток в некоторых случаях все же может быть частично компенсирован. Так, например, недостаток поступающего вместе с пищей незаменимого фенилаланина может быть частично замещен заменимым тирозином. Гомоцистеин вместе с необходимым количеством доноров метильных групп снижает потребности в метионине, а глутаминовая кислота частично замещает аргинин.
Источники:⚠ [ Все материалы носят ознакомительный характер. Отказ от ответственности krok8.com ]
krok8.com
Материал из Википедии — свободной энциклопедии
Структурная формула селеноцистеина Структурная формула цистеинаНестанда́ртные аминокисло́ты — аминокислоты, которые, хотя и не входят в список встречающихся во всех живых организмах 20 аминокислот, обнаружены в составе белков. Нестандартные аминокислоты могут включаться в состав белков как во время их синтеза, так и в результате посттрансляционной модификации, то есть дополнительных ферментативных реакций. К первой группе относятся селеноцистеин и пирролизин, которые входят в состав белков при считывании стоп-кодона специализированными тРНК. Ко второй — 4-гидроксипролин, 5 — гидроксилизин, десмозин, N-метиллизин, цитруллин, а также D-изомеры стандартных аминокислот.
Дата выделения | Аминокислота | Источник |
---|---|---|
Замещённые аминокислоты | ||
1962 | 3-гидроксипролин | коллаген |
1940 | δ-гидроксилизин | желатин |
1969 | 3,4-дигидроксипролин | клеточная стенка диатомовых водорослей |
1902 | 4-гидроксипролин | желатин |
1959 | ε-N-метиллизин | флагеллин из сальмонеллы, гистон тимуса телёнка |
1967 | ε-(N,N)-диметиллизин | гистон тимуса телёнка |
1968 | ε-(N,N,N)-триметиллизин | некоторые гистоны |
1967 | 3-метилгистидин | актин мускула кролика |
1968 | NG-метиларгинин | гистон тимуса телёнка |
1971 | NG,NG-диметиларгинин | эцифалитогенный белок быка (прион) |
1971 | NG,N’G-диметиларгинин | |
1970 | ε-(N,N,N)-триметил-δ-гидроксилизин | клеточная стенка диатомовых водорослей |
1948 | 3-иодтирозин | тироглобулин |
1931 | 3,5-дииодтирозин | тироглобулин |
1951 | 3-бромтирозин | склеропротеин горгонии |
1972 | 3-хлортирозин | склеропротеин волнистого рожка, кутикулярный белок саранчи обыкновенной |
1972 | 3,5-дихлортирозин | кутикулы мечехвоста |
1971 | 3-бром-5-хлортирозин | склеропротеин волнистого рожка |
1972 | тироксин | тироглобулин |
1953 | 3,3,5-трииодтиронин | тироглобулин |
1971 | гипузин | фактор, инициирующий трансляцию EIF5A |
1930 | цитруллин | белок сердцевины волос |
γ-карбоксиглутаминовая кислота | протромбин быка | |
Связанные между собой аминокислоты (олигопептидомиметики) | ||
1963 | десмозин | эластин |
1963 | изодесмозин | эластин |
дитирозин | резилин | |
1965 | лизиннорлейцин | эластин |
ru.wikipedia.org
Аминокислоты – органические соединения (еще их можно назвать своеобразными органическими блоками) из которых состоит белок, или иначе — протеин.
В организм человека аминокислоты попадают в составе белков. В желудочно-кишечном тракте происходит расщепление пептидных связей белков и их распад на аминокислоты, из которых в дальнейшем образуются новые необходимые организму белки.
Отличительная черта аминокислот состоит в том, что они хорошо растворяются в воде. Без них организм не сможет формировать новые клетки в мышечных волокнах, укреплять стенки сосудов и не будет происходить образование хрящевой ткани. Так же без аминокислот организм не сможет вырабатывать необходимые гормоны, ферменты и антитела.
По своей природе аминокислоты делятся на заменимые – организм может самостоятельно синтезировать, и незаменимые – организм человека не может самостоятельно формировать. Незаменимые аминокислоты поступают в организм человека. Нехватка белка в организме может вызвать снижение веса, уменьшение объема мышечной ткани и нарушение обмена веществ.
Сегодня, качественное спортивное питание (как хороший пример, можно рассмотреть компанию PowerPro) включает в свой состав все незаменимые аминокислоты, которые призваны улучшить развитие мышечной ткани и одновременно питают все клетки необходимыми микроэлементами. Особую роль также играет вещество, которое синтезируется из аминокислот «карнитин» — неотъемлимый компонент большинства жиросжигателей.
По разным исследованиям принято считать, что всего аминокислот насчитывается от 22 до 24 (согласно различным научным исследованиям). Существует несовпадение взглядов на количество незаменимых аминокислот (от 8 до 10). Вызвано оно тем, что учеными было выявлено 2 аминокислоты, которые не синтезируются у детей, в то время как у взрослых они вырабатываются.
В группу незаменимых аминокислот входят:
Лейцин – аминокислота, по своему действию схожа с иммуномодулятором, так как помогает укрепить иммунитет человека. Еще одним важным свойством этой аминокислоты является вывод накопившихся токсинов. Она регулирует процессы синтеза и распада белков, в основном замедляя процесс его распада. Еще одним свойством лейцина является несильное понижение уровня сахара в крови. В продуктах питания содержится в мясе, бобах, соевой и пшеничной муке, орехах. Употреблять искусственные добавки нужно с осторожностью, так как лецитин принимается вместе с валином и изолейцином, которые не меняя своей структуры попадает сразу в мозг. Неумеренное употребление может увеличить содержание аммиака в организме и вызвать гипогликемию (резкое снижение содержания глюкозы в крови).
Валин – оказывает стимулирующее действие не только на мозговую деятельность организма, но и на организм в целом. Эта аминокислота регулирует обмен веществ в мышцах, помогает восстановить поврежденные ткани во время тренировок. Основной источник валина – мясная продукция. Однако он также содержится в зерновых, грибах, молочной продукции, арахисе. Он незаменим при образовании витамина В3. Также понижает чувствительность организма к холоду, жаре и боли.
Его переизбыток в организме может вызвать чувство «мурашек» по коже и в некоторых случаях галлюцинации.
Изолейцин – помогает увеличить выносливость при тяжелых физических нагрузках и восстановить мышечные ткани. Аминокислота незаменима при образовании гемоглобина и регулировании уровня сахара в крови. Изолейцин содержится в таких пищевых продуктах: рыбе, чечевице, орехах, кешью и миндале, курином мясе, печени. При употреблении с первыми двумя аминокислотами необходимо строго соблюдать баланс.
Фенилаланин — химическое вещество, которое способно передавать сигналы между нервными клетками и мозгом. Эта аминокислота улучшает мозговую деятельность, притупляет чувство голода и облегчает следствие действия депрессии. Природными источниками являются все хлебобулочные изделия, творог, арахис, бобы, миндаль, кунжутные семечки. Противопоказания есть только для беременных и больных фенилкетонурией (накопление фенилаланина и его тяжелых продуктов).
Лизин – аминокислота, которая препятствует образованию бляшек на стенках сосудов, тем самым уменьшая риск заболевания атеросклерозом. Помогает усваиваться кальцию в организме, что способствует правильному формированию костей. Содержится в яйцах, молоке, картофеле, дрожжевых продуктах. Также он помогает снизить лишний вес, подавляет развитие вирусных заболеваний (герпеса) и нормализует обмен веществ.
Метионин – помогает бороться с жировыми отложениями не только на стенках сосудов, но и печени. Также аминокислота участвует в синтезе адреналина и креатина, помогает активизировать действие витамина В12, фолиевой кислоты, гормонов. Пищевые источники — бобовые, чеснок, яйца, соевые бобы. Еще метионин позволяет снизить уровень холестерина в крови.
Треонин — помогает усилить умственную деятельность, а также стимулирует очистку печени. Поддерживает постоянную работу пищеварительного тракта.
Триптофан – снимает чувство тревоги, усталости и стимулирует выработку гормона роста. Его постоянное применение снижает чувство голода, улучшает не только эмоциональное состояние организма, но и улучшает сон. В природных продуктах содержится в молоке, мясе, твороге, бананах, индейке.
В группу условно заменимых аминокислот входят:
Аргинин – незаменимая аминокислота для детей, в то время как для взрослых заменима. Способствует очищению печени, укрепляет иммунную систему, и стимулирует выработку гормона роста. Аргинин в своем составе содержит азот, который также необходим для формирования мышечной ткани. Благотворно влияет на уменьшение жировой ткани, делая мышцы более рельефными.
Гистидин – для растущего организма является незаменимым. Помогает в формировании гемоглобина, очень необходим при травмах, так как позволяет быстрее восстановиться организму.
Тирозин – помогает регулировать настроение, его дефицит приводит к депрессиям. Также необходим при формировании гормонов щитовидной железы. Может понижать артериальное давление, оказывает противоаллергическое действие и подавляющее аппетит.
Цистин – аминокислота, которая помогает снять воспалительный процесс и принимает участие в выработке коллагена.
В группу заменимых аминокислот входят:
Аланин – аминокислота, которая является одним из источников энергии мышц. Помогает регулировать содержание уровня сахара в крови, контролирует деятельность центральной нервной системы.
Аспарагин – участвует в синтезе аспарагиновой кислоты, которая в свою очередь стимулирует развитее РНК и ДНК, и как результат укрепляет иммунную систему.
Глютамин – является основным питательным веществом нервной системы, таким образом, необходим для «усталого» мозга и помогает справиться с депрессией.
Глицин – аминокислота, которая непосредственно участвует при формировании креатина, который содержится в мышечной ткани.
Пролин – важен для формирования суставов и связок, а также улучшает работу сердечно-сосудистой системы.
Серин – помогает улучшить защиту иммунной системы, обеспечивая ее антителами. Также эта аминокислота помогает организму запастись гликогеном в печени и мышцах.
Цитрулин – аминокислота, которая ускоряет обмен веществ мочевины, и помогает утилизировать аммиак, как следствие улучшается питание мышц и выносливость организма.
Таурин – для маленького организма очень необходим при развитии нервной системы, сетчатки глаза. У взрослых улучшает работу сердечной мышцы и помогает улучшить усваиваемость жиров и регулирует выработку инсулина.
Цистеин – направлен на формирование структуры волос, ногтей, улучшает эластичность кожи. Является сильным антиоксидантом, особенно при приеме витамина С, селена. Помогает усилить сжигание жиров и как результат эффективнее нарастить мышечную массу.
Орнитин — лучше действует в ночное время, как эффективное средство для похудения. Также помогает выделяться инсулину, как веществу ускоряющему обновление и производство новых клеток, тканей, мышечных волокон.
«Золотое правило» для хорошего усвоения аминокислот, которого советуют придерживаться специалисты PowerPro – это прием именно в то время, когда организм в них остро нуждается. В таком случае лучше всего будут усваиваться аминокислоты.
Для достижения такого эффекта необходимо за 20 мин до тренировки и через 20 минут после принимать аминокислоты вместе со спортивным питанием. Такая закономерность связана с тем, что расходуя запасы аминокислот при активных нагрузках, организм быстро пытается их восполнить, а принятые аминокислоты как раз отлично послужат «кирпичиками» при формировании новых клеток (но, не стоит надеятся, что Ваш рацион можно ограничить приемом одних только аминокислот, как это бывает при желании похудеть на белковой диете).
Что же касается трех аминокислот лейцина, изолейцина и валина (еще их называют ВСАА), то их лучше принимать сразу после тренировки, тогда улучшается их всасываемость в организм. Следуя этим нехитрым правилам, Вы сможете предупредить разрушение мышечной ткани, уменьшив количество жировой ткани.
Как показал многолетний опыт многих успешных компаний, одной из которых является PowerPro, применение аминокислот не вызывало критичных неизменимых побочных реакций. Естественно если Вы не будете соблюдать условия применения, то не только не добьетесь нужного результата, но и можете нанести своему организму определенный вред.
Однако, если у Вас есть заболевая почек, печени, сердечно-сосудистой системы, стоит проконсультироваться с врачом перед приемом таких спортивных добавок. Почки выводят остатки аминокислот, поэтому если данная функция плохо осуществляется — это может только осложнить состояние. Аминокислоты также стимулируют кровообращение в сосудистой системе, поэтому усиливается нагрузка на сердце и, как результат, при некоторых заболеваниях могут возникнуть осложнения.
При неумеренном употреблении аминокислот временно может приглушиться действие ЦНС, что скажется на состоянии организма и проявиться в форме апатичности и вялости.
Решив заняться спортом и увеличив ежедневные нагрузки на организм, не забывайте, что необходимо не забывать о сбалансированном повседневном питании. Это поможет поддержать организм в бодром состоянии и добиться более значительных результатов. Ну и самое главное, покупайте продукцию только у проверенных производителей, которые зарекомендовали себя на отечественном рынке, как производитель качественной продукции, безопасной для Вашего здоровья.
www.powerpro.in.ua
Продукты содержащие аминокислоты
3.7 (73.33%) 3 votesДля правильной и полноценной работы организма необходимы химические вещества, в число которых входят и аминокислоты.
Аминокислоты есть строительным материалом, из которого впоследствии строятся белки и все живые организмы. В системе человека из белков состоят все органы, мышцы, волосы, ногти, и частично кости. Белки являются химическими веществами, передающими нервный импульс от клетки к клетке, снабжая их кислородом. Эти органические соединения используются организмом при производстве гормонов, пигментов и витаминов, отвечают за водный баланс.
Человек не в состоянии производить все необходимые аминокислоты самостоятельно и получает некоторые исключительно из пищи. Известно большое количество этих важных для существования человека органических соединений, десять из них являются незаменимыми, еще порядка двадцати находятся в еде, и человек способен получить их извне.
Каждая аминокислота несет особенные функции, очень важные для полноценной работы организма. Много необходимых АК производится в печени человека, такие называют – «Заменимые», те же, что организм произвести не в состоянии называются – «Незаменимые», то есть получаемые из продуктов питания, есть и такие, производство которых зависит от некоторых условий (возрастные критерии), это «Условно заменимые аминокислоты».Стоит подчеркнуть, что все самые важные аминокислоты находятся в продуктах питания.
Чтобы расти и развиваться, организму необходимы продукты, в которых есть два основных компонента – белки и аминокислоты
В список «Заменимых» относятся:
Для того, чтобы организм мог функционировать и развиваться, человеку нужно поступление 20 аминокислот
Условно заменимыми считаются аминокислоты, которые не могут вырабатываться в определенные периоды жизнедеятельности (младенческий возраст и преклонный), либо при недостаточном количестве таких компонентов, как:
Условно заменимые есть в продуктах питания с высоким содержанием аминокислот: бобовых, бананах, орехах и семечках, мясе птицы, говядины и индейки, морепродуктах.
Незаменимые аминокислоты поступают в наш организм с пищей, которую мы употребляем
Составляя себе меню, особенно при худении, необходимо выбирать продукты, содержащие незаменимые аминокислоты в нужном количестве и знать способ их действия на организм.
Рассмотрим, какие аминокислоты относят к незаменимым – это те, что не в состоянии самостоятельно синтезировать организм:
Ввиду того, что самостоятельно человек не продуцирует вышеперечисленные вещества, рассмотрим при помощи таблицы «Продукты с высоким содержанием аминокислот»:
Белки и НАК имеют огромное значение для правильного функционирования всех систем организма человека. Белок, который поступает извне, наиболее полноценный при его сбалансированном составе. Потребность в НАК резко возрастает при интенсивных занятиях спортом и больших рисках травм. Невозможно наращивание мышечной массы при нехватке АК в организме. Для быстрого восстановления после физических и стрессовых нагрузок, истребления жиров и поддержания отличной формы необходимо употреблять продукты, богатые НАК для правильного их баланса в сложной системе функционирования человека.
При недостаточном потреблении и выработке человеком этих органических веществ из продуктов возникает нервное и физическое истощение, апатия, ухудшение качественного состава крови, отставание в развитии и росте, ухудшение состояния кожного покрова, ногтевых пластин и волос.
Чрезмерное количество аминокислот тоже влечет за собой негативные воздействия на человека:
Потребность в аминокислотах варьируется в зависимости от состояния здоровья, возраста, качества жизни, а также от количества и интенсивности физической нагрузки. Необходимо четко понимать и регулировать количественный состав аминокислот в организме. Так, нормальной суточной дозой потребления определена потребность в количестве 0,5-2 грамма в сутки.
Очень важно помнить, что при наличии нарушений с усвояемостью этих веществ могут возникать реакции аллергического характера. Сильно возрастает необходимость в их дополнительном поступлении при активной физической и умственной нагрузке, в период интенсивного роста, во время борьбы с заболеваниями и в период восстановления.
Роль АК в жизни людей имеет колоссальное значение в любой период жизнедеятельности. Для восстановления этого сложного и нужного баланса при нормальном ритме жизни достаточно употреблять продукты, богатые аминокислотами. Однако, этого недостаточно для профессиональных спортсменов, людей, стремящихся нарастить мышечную массу и для тех, чья профессия или образ жизни связаны с повышенными нагрузками экстремального характера. В таких случаях лучше воспользоваться специальными органическими комплексами с большим содержанием аминокислот.
gymbuild.ru
© Yulia Furman — stock.adobe.com
Аминокислоты — органические вещества, состоящие из углеводородного скелета и двух дополнительных групп: аминной и карбоксильной. Последние два радикала обусловливают уникальные свойства аминокислот — они могут проявлять свойства как кислот, так и щелочей: первые — за счет карбоксильной группы, вторые — за счет аминогруппы.
Итак, мы выяснили, что такое аминокислоты с точки зрения биохимии. Теперь рассмотрим их влияние на организм и применение в спорте. Для спортсменов аминокислоты важны своим участием в протеиновом обмене. Именно из отдельных аминокислот строятся протеины для роста мышечной массы нашего тела — мышечная, скелетная, печеночная, соединительная ткани. Помимо этого, некоторые аминокислоты напрямую участвуют в обмене веществ. К примеру, аргинин участвует в орнитиновом цикле мочевины — уникальном механизме обезвреживания аммиака, образующегося в печени в процессе переваривания белков.
Перечислять можно долго, однако остановимся на аминокислоте, значение которой особенно велико для спортсменов и людей, умеренно занимающихся спортом.
Глютамин — аминокислота, лимитирующая синтез протеина, из которого состоит наша иммунная ткань — лимфатические узлы и отдельные образования лимфоидной ткани. Значение этой системы переоценить трудно: без должного сопротивления инфекциям ни о каком тренировочном процессе говорить не приходится. Тем более, что каждая тренировка — не важно, профессиональная или любительская — это дозированный стресс для организма.
Стресс — необходимое условие, чтобы сдвинуть с места нашу «точку равновесия», то есть вызвать определенные биохимические и физиологические изменения в организме. Любой стресс — это цепь реакций, мобилизующих тело. В промежуток, характеризующий регресс каскада реакций симпатоадреналовой системы (а именно они и представляют собой стресс), происходит снижение синтеза лимфоидной ткани. По этой причине процесс распада превышает скорость синтеза, а значит, иммунитет ослабевает. Так вот, дополнительный прием глютамина сводит к минимуму этот крайне нежелательный, но неизбежный эффект физической нагрузки
Чтобы понять, для чего нужны незаменимые аминокислоты в спорте, необходимо иметь общие представления о белковом обмене. Потребленные человеком белки на уровне желудочно-кишечного тракта обрабатываются ферментами — веществами, расщепляющими пищу, которую мы употребили.
В частности, белки распадаются сперва до пептидов — отдельных цепочек аминокислот, не имеющих четвертичной пространственной структуры. И уже пептиды распадутся на отдельные аминокислоты. Те, в свою очередь, усваиваются организмом человека. Это значит, что аминокислоты всасываются в кровь и только с этого этапа могут быть использованы в качестве продуктов для синтеза белка тела.
Забегая вперед скажем, что прием отдельных аминокислот в спорте сокращает этот этап — отдельные аминокислоты будут сразу же всасываться в кровь и процессы синтеза, а также биологический эффект аминокислот наступят быстрее.
Всего существует двадцать аминокислот. Чтобы процесс синтеза белка в теле человека стал возможным в принципе, в рационе человека должен присутствовать полный спектр — все 20 соединений.
Вот с этого момента и появляется понятие незаменимости. К незаменимым аминокислотам относятся те, которые наше тело не способно синтезировать самостоятельно из других аминокислот. А это значит, что появится им, кроме как из продуктов питания, неоткуда. Таких аминокислот насчитывается 8 плюс 2 частично-заменимые.
Рассмотрим в таблице, в каких продуктах содержится каждая незаменимая аминокислота и какова ее роль в организме человека:
Название | В каких продуктах содержится | Роль в организме |
Лейцин | Орехи, овес, рыба, яйца, курица, чечевица | Снижает содержание сахара в крови |
Изолейцин | Нут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясо | Восстанавливает мышечную ткань |
Лизин | Амарант, пшеница, рыба, мясо, большинство молочных продуктов | Принимает участие в усвоении кальция |
Валин | Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые | Принимает участие в обменных процессах азота |
Фенилаланин | Говядина, орехи, творог, молоко, рыба, яйца, разные бобовые | Улучшение памяти |
Треонин | Яйца, орехи, бобы, молочные продукты | Синтезирует коллаген |
Метионин | Фасоль, соя, яйца, мясо, рыба, бобовые, чечевица | Принимает участие в защите от радиации |
Триптофан | Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финики | Улучшает и делает сон глубже |
Гистидин (частично-заменимая) | Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезка | Принимает участие в противовоспалительных реакциях |
Аргинин (частично-заменимая) | Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис | Способствует росту и восстановлению тканей организма |
В достаточном количестве аминокислоты содержатся в животных источниках белка — рыбе, мясе, птице. При отсутствии таковых в рационе весьма целесообразен прием недостающих аминокислот в качестве добавок спортивного питания, что особенно актуально для спортсменов-вегетарианцев.
Основное внимание последним стоит обратить на такие добавки, как ВСАА — смесь лейцина, валина и изолейцина. Именно по этим аминокислотам возможна «просадка» в рационе, не содержащем животных источников белка. Для спортсмена (как профессионала, так и любителя) это абсолютно не допустимо, так как в долгосрочной перспективе приведет к катаболизму со стороны внутренних органов и к заболеваниям последних. В первую очередь страдает от недостатка аминокислот печень.
© conejota — stock.adobe.com
Заменимые аминокислоты и их роль рассмотрим в таблице ниже:
Название | Роль в организме |
Аланин | Принимает участие в глюконеогенезе печени |
Пролин | Отвечает за составление прочной структуры коллагена |
Левокарнитин | Поддерживает кофермент А |
Тирозин | Отвечает за ферментативную активность |
Серин | Отвечает за построение природных белков |
Глютамин | Синтезирует протеины мышц |
Глицин | Снижает напряжение т уменьшает агрессивность |
Цистеин | Положительно влияет на текстуру и состояние кожи |
Таурин | Оказывает метаболическое действие |
Орнитин | Принимает участие в биосинтезе мочевины |
Аминокислоты, попавшие в кровоток, в первую очередь распределяются по тканям тела, где в них есть наибольшая потребность. Если у вас есть «просадка» по определенным аминокислотам, прием дополнительного количества белка, богатого ими, или прием дополнительных аминокислот, будет особенно полезен.
Синтез белка происходит на клеточном уровне. В каждой клетка есть ядро — самая важная часть клетки. Именно в ней происходит считывание генетической информации и ее воспроизводство. По сути, вся информация о строении клеток закодирована в последовательности аминокислот.
Как выбрать аминокислоты рядовому любителю, умеренно занимающемуся спортом 3-4 раза в неделю? Никак. Они ему просто не нужны.
Более важны для современного человека следующие рекомендации:
Эти элементарные манипуляции принесут гораздо больше, чем добавление в рацион каких бы то ни было добавок. Более того, добавки без соблюдения указанных условий будут абсолютно бесполезны.
Зачем знать, какие аминокислоты вам нужны, если вы питаетесь непонятно чем? Откуда вы знаете, из чего сделаны котлеты в столовой? Или сосиски? Или что за мясо в котлете в бургера? Про начинку для пиццы вообще промолчим.
Поэтому прежде, чем делать вывод о потребности в аминокислотах, нужно начать питаться простыми, чистыми и полезными продуктами и выполнить описанные выше рекомендации.
То же самое касается дополнительного приема белка. Если в вашем рационе присутствует белок, в количестве 1,5- 2 г на килограмм массы тела, никакой дополнительный белок вам не нужен. Лучше потратить деньги на покупку качественных продуктов питания.
Важно также понимать, что протеин и аминокислоты — это не фармакологические препараты! Это всего лишь добавки спортивного питания. И ключевое слово здесь — добавки. Добавляют их по потребности.
Чтобы понять, есть ли потребность, нужно контролировать свое питание. Если вы уже прошли описанные выше шаги и поняли, что добавки все-таки необходимы, первое, что вы должны сделать — пойти в магазин спортивного питания и выбрать соответствующий продукт в соответствии с финансовыми возможностями. Единственное, чего не стоит делать новичкам — это покупать аминокислоты с натуральным вкусом: пить их будет затруднительно по причине чрезвычайной горечи.
Если у вас есть заболевания, характеризующиеся непереносимостью одной из аминокислот, вы об этом знаете с рождения, так же, как и ваши родители. Этой аминокислоты нужно избегать и дальше. Если же этого нет, говорить о вреде и противопоказаниях добавок нет смысла, поскольку это полностью натуральные вещества.
Аминокислоты — составляющая часть белка, белок — привычная часть рациона человека. Все то, что продается в магазинах спортивного питания — не является фармакологическими препаратами! Только дилетанты могут говорить о каком-то вреде и противопоказаниях. По той же причине нет смысла рассматривать такое понятие, как побочные эффекты аминокислот — при умеренному потреблении никаких негативных реакций быть не может.
Трезво подходите к своему рациону и спортивным тренировкам! Будьте здоровы!
Оцените материалНаучный консультант проекта. Физиолог (биологический факультет СПБГУ, бакалавриат). Биохимик (биологический факультет СПБГУ, магистратура). Инструктор по хатха-йоге (Институт управления развитием человеческих ресурсов, проект GENERATION YOGA). Научный сотрудник (2013-2015 НИИ акушерства, гинекологии и репродуктологии им. Отта, работа с маркерами женского бесплодия, анализ биологических образцов; 2015-2017 НИИ особо чистых биопрепаратов, разработка лекарственных средств) Автор и научный консультант сайтов по тематике ЗОЖ и науке (в области продления жизни) C 2019 года научный консультант проекта Cross.Expert.
Редакция cross.expert
cross.expert
Аминокислоты — гетерофункциональные соединения, которые обязательно содержат две функциональные группы: аминогруппу —NH2 и карбоксильную группу —СООН, связанные с углеводородным радикалом.
Общую формулу простейших аминокислот можно записать так:
Так как аминокислоты содержат две различные функциональные группы, которые оказывают влияние друг на друга, характерные реакции отличаются от характерных реакций карбоновых кислот и аминов.
Аминогруппа —NH2 определяет основные свойства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.
Группа —СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Следо вательно, аминокислоты — это амфотерные органические соединения.
Со щелочами они реагируют как кислоты:
С сильными кислотами как основания-амины
www.chem-mind.com