Что образуют аминокислоты


АМИНОКИСЛОТЫ • Большая российская энциклопедия

АМИНОКИСЛО́ТЫ, ор­га­нич. со­еди­не­ния, со­дер­жа­щие кар­бок­силь­ные COOH и ами­но­груп­пы NH2. Ис­клю­че­ние со­став­ля­ет про­лин. Об­ла­да­ют свой­ст­ва­ми и ки­слот и ос­но­ва­ний. В за­ви­си­мо­сти от по­ло­же­ния ами­но­груп­пы в уг­ле­род­ной це­пи от­но­си­тель­но кар­бок­силь­ной груп­пы раз­ли­ча­ют α-, β-, γ- и др. А. У ω-А. ами­но­груп­па на­хо­дит­ся на кон­це це­пи. Уча­ст­ву­ют в об­ме­не азо­ти­стых ве­ществ всех ор­га­низ­мов, яв­ля­ясь ис­ход­ны­ми со­еди­не­ния­ми при био­син­те­зе бел­ков, пеп­ти­дов, пу­ри­но­вых и пи­ри­ми­ди­но­вых ос­но­ва­ний, ря­да ви­та­ми­нов, пиг­мен­тов, ал­ка­лои­дов и др.

Классификация

Опи­са­но свыше 150 при­род­ных А., сре­ди ко­то­рых осо­бен­но важ­ны 20 α-А. (табл.), вхо­дя­щих в со­став бел­ков, ко­ди­руе­мых ге­не­тическим кодом; об­щая фор­му­ла:

В за­ви­си­мо­сти от при­ро­ды бо­ко­вой це­пи R α-А. под­раз­де­ля­ют на две груп­пы: А. с не­по­ляр­ны­ми (гид­ро­фоб­ны­ми) и А. с по­ляр­ны­ми (гид­ро­филь­ны­ми) бо­ко­вы­ми це­пя­ми. К 1-й груп­пе от­но­сят­ся шесть А. с али­фа­тич. бо­ко­вой це­пью – ала­нин, ва­лин, лей­цин, изо­лей­цин, ме­тио­нин, про­лин и две с аро­ма­ти­че­ской – фе­ни­ла­ла­нин и трип­то­фан. Сре­ди пред­ста­ви­те­лей 2-й груп­пы бо­ко­вые це­пи ­семи А. со­дер­жат груп­пи­ров­ки, спо­соб­ные не­сти от­ри­цат. или по­ло­жит. за­ряд. В ас­па­ра­ги­но­вой и глу­та­ми­но­вой ки­слотах β- и γ-кар­бок­силь­ные груп­пы при рН 7,0 за­ря­же­ны от­ри­ца­тель­но. К осно́вным А. от­но­сят­ся ли­зин, ар­ги­нин и гис­ти­дин. ε-Ами­но­груп­па ли­зи­на и гуа­ни­ди­но­вая груп­пи­ров­ка ар­ги­ни­на не­сут по­ло­жит. за­ряд (про­то­ни­ро­ва­ны) в ней­траль­ной сре­де, а имид­азоль­ная груп­пи­ров­ка гис­ти­ди­на – в ки­слой. В ще­лоч­ных ус­ло­ви­ях от­ри­цат. за­ряд мо­гут при­об­ре­тать бо­ко­вые груп­пы ти­ро­зи­на и цис­теи­на. Ха­рак­тер­ной осо­бен­но­стью ос­тат­ков цис­теи­на яв­ля­ет­ся их спо­соб­ность в со­ста­ве мо­ле­ку­лы бел­ка под­вер­гать­ся окис­ле­нию с об­ра­зо­ва­ни­ем ос­тат­ков цис­ти­на. А. при­свое­ны со­кра­щён­ные трёх­бу­к­вен­ные и од­но­бу­к­вен­ные обо­зна­че­ния, ис­поль­зуе­мые в на­уч. ли­те­рату­ре. В 1986 в ряде бел­ков ар­хе­бак­терий, ис­тин­ных бак­те­рий (эу­бак­те­рий) и жи­вот­ных бы­ла об­на­ру­же­на α-А. – се­ле­но­ци­сте­ин (ей при­свое­ны сим­во­лы Sec и U), в 2002 от­крыт пир­ро­ли­зин (по­ка об­на­ру­жен толь­ко у од­но­го ви­да ме­та­ноб­ра­зую­щих ар­хей). Обе эти А. ко­ди­ру­ют­ся три­пле­та­ми, ко­то­рые обыч­но слу­жат «стоп-ко­до­на­ми» (т. е. опо­ве­ща­ют об окон­ча­нии син­те­за бел­ка на ри­бо­со­мах): се­ле­но­ци­сте­ин – три­пле­том UGA, а пир­ро­ли­зин – UAG.

Пирролизин (где R=Ch4, Nh3 или OH)

Цистин

Селеноцистеин

Боль­шая часть А., об­на­ру­жен­ных в тка­нях жи­вых ор­га­низ­мов, но не вхо­дя­щих в со­став бел­ков, мо­гут вы­пол­нять важ­ные функ­ции. Так, ор­ни­тин и цит­ру­лин уча­ст­ву­ют в об­ме­не ве­ществ, в ча­ст­но­сти в син­те­зе мо­че­ви­ны у жи­вот­ных, 2,4-ди­гид­ро­ок­си­фе­ни­ла­ла­нин (ДОФА) об­ра­зу­ет­ся в ка­че­ст­ве про­ме­жу­точ­но­го про­дук­та в хо­де рас­па­да фе­ни­ла­ла­ни­на и ти­ро­зи­на в ор­га­низ­ме и яв­ля­ет­ся ме­диа­то­ром цен­траль­ной нерв­ной сис­те­мы. Кро­ме то­го, име­ют­ся А., функ­ция ко­то­рых по­ка не яс­на. В ря­де бел­ков (уже по­сле их син­те­за на ри­бо­со­мах) бо­ко­вые груп­пы А. пре­тер­пе­ва­ют из­ме­не­ния в хо­де по­сттранс­ля­ци­он­ной мо­дифи­ка­ции. Напр., в со­ста­ве мо­ле­ку­лы кол­ла­ге­на про­лин и ли­зин пре­вра­ща­ют­ся со­от­вет­ст­вен­но в 4-гид­ро­кси­про­лин и 5-гид­ро­кси­ли­зин, в мио­зи­не при­сут­ству­ет N-ме­тил­ли­зин, толь­ко в эла­сти­не встре­ча­ет­ся фер­мен­та­тив­но мо­ди­фи­ци­ро­ван­ный ли­зин – дес­мо­зин. По­ми­мо α-А. в сво­бод­ном ви­де и в со­ста­ве не­ко­то­рых био­ло­ги­че­ски важ­ных пеп­ти­дов, встре­ча­ют­ся А., ами­но­груп­па ко­то­рых свя­за­на не с α-уг­ле­род­ным ато­мом. К их чис­лу от­но­сят­ся β-ала­нин, вхо­дя­щий в со­став пан­то­те­но­вой ки­сло­ты, γ-ами­но­мас­ля­ная ки­сло­та, иг­раю­щая важ­ную роль в функ­цио­ни­ро­ва­нии нерв­ной сис­те­мы, δ-ами­но­ле­ву­ли­но­вая ки­сло­та, яв­ляю­щая­ся про­ме­жу­точ­ным про­дук­том син­те­за пор­фи­ри­нов.

Физические и химические свойства

А. – бес­цвет­ные кри­стал­лич. ве­ще­ст­ва, рас­тво­ри­мые в во­де; темп-ры плав­ле­ния 220–315 °C. В кри­стал­лах и вод­ных рас­тво­рах при ней­траль­ных зна­че­ни­ях рН α-А. су­ще­ст­ву­ют пре­им. в ви­де ди­по­ляр­ных ио­нов (цвит­тер-ио­нов), у кото­рых ами­но­груп­пы про­то­ни­ро­ва­ны , а кар­бок­силь­ные груп­пы дис­со­ции­ро­ва­ны (СОО-). А. яв­ля­ют­ся ам­фо­ли­та­ми; ио­ни­за­ция их мо­ле­кул за­ви­сит от рН рас­тво­ра:

Зна­че­ния pH, при ко­то­ром кон­цен­тра­ция ка­тио­нов А. рав­на кон­цен­тра­ции анио­нов, на­зы­ва­ет­ся изо­элек­три­че­ской точ­кой (pI). Ами­но­груп­па А. ио­ни­зи­ро­ва­на в неск. мень­шей сте­пе­ни, чем кар­бок­силь­ная груп­па, по­это­му вод­ный рас­твор А. име­ет сла­бо­кис­лый ха­рак­тер. Все α-А., кро­ме гли­ци­на, име­ют асим­мет­ри­че­ский (хи­раль­ный) α-уг­ле­род­ный атом и су­ще­ст­ву­ют в ви­де двух энан­тиоме­ров. У изо­лей­ци­на и тре­о­ни­на хи­раль­ны­ми яв­ля­ют­ся так­же и β-уг­ле­род­ные ато­мы.

За ред­ким ис­клю­че­ни­ем при­род­ные α-А. от­но­сят­ся к L-ря­ду и толь­ко в обо­лоч­ках бак­те­рий, в со­ста­ве не­ко­то­рых ан­ти­био­ти­ков и в ме­та­бо­ли­тах гри­бов, а так­же в ко­же не­ко­то­рых ви­дов юж­но­аме­ри­кан­ских ля­гу­шек и кор­не жень­ше­ня об­на­ру­же­ны А. D-ря­да.

В ре­зуль­та­те взаи­мо­дей­ст­вия α-ами­но­груп­пы од­ной А. с α-кар­бок­силь­ной груп­пой дру­гой А. в про­цес­се био­син­те­за бел­ка (транс­ля­ции) про­ис­хо­дит об­ра­зо­ва­ние пеп­тид­ной свя­зи.

Превращения аминокислот в организмах

Выс­шие рас­те­ния и хе­мо­син­те­зи­рую­щие ор­га­низ­мы все не­об­хо­ди­мые им А. син­те­зи­ру­ют из ам­мо­ние­вых со­лей и нит­ра­тов, а так­же из ке­то- или гид­ро­кси­кис­лот – про­дук­тов ды­ха­ния и фо­то­син­те­за. Че­ло­век и жи­вот­ные син­те­зи­ру­ют боль­шин­ст­во А. из обыч­ных без­азо­ти­стых про­дук­тов об­ме­на и ам­мо­ние­во­го азо­та. Это т. н. за­ме­ни­мые А. Но ряд А. – не­за­ме­ни­мых – они долж­ны по­лу­чать в го­то­вом ви­де с пи­щей. Для че­ло­ве­ка, напр., не­за­ме­ни­мы­ми А. яв­ля­ют­ся ва­лин, изо­лей­цин, лей­цин, ли­зин, ме­тио­нин, тре­о­нин, трип­то­фан и фе­ни­ла­ла­нин, а для де­тей так­же ар­ги­нин и гис­ти­дин. Не­дос­та­ток в ор­га­низ­ме той или иной ами­но­кис­ло­ты при­во­дит к на­ру­ше­нию об­ме­на ве­ществ, замед­ле­нию рос­та и раз­ви­тия. А. уча­ст­ву­ют в под­дер­жа­нии азо­ти­сто­го ба­лан­са в ор­га­низме. Окис­лит. рас­пад А. пу­тём дез­ами­ни­ро­ва­ния при­во­дит к об­ра­зо­ва­нию ке­то- и гид­ро­кси­кис­лот – про­ме­жу­точ­ных про­дук­тов цик­ла три­кар­бо­нов­ных ки­слот; да­лее они пре­вра­ща­ют­ся в уг­ле­во­ды, но­вые А. и т. д. или окис­ля­ют­ся до СО2 и Н2О с вы­де­ле­нием энер­гии. У жи­вот­ных азот в ви­де ам­мо­ние­вых со­лей, мо­че­ви­ны или мо­чевой ки­сло­ты вы­во­дит­ся из ор­га­низ­ма. У рас­те­ний ус­вое­ние А. про­ис­хо­дит т. о., что азо­ти­стые от­хо­ды прак­ти­че­ски от­сут­ст­ву­ют. Не­ко­то­рые А. яв­ля­ют­ся пред­ше­ст­вен­ни­ка­ми важ­ных гор­мо­нов и ней­ро­ме­диа­то­ров: ти­ро­зин и фе­ни­ла­ла­нин – дофа­ми­на и ад­ре­на­ли­на, трип­то­фан – се­ро­то­ни­на, гис­ти­дин – гис­та­ми­на, глу­та­ми­но­вая ки­сло­та – γ-ами­но­мас­ля­ной ки­сло­ты, ар­ги­нин – ок­си­да азо­та (NO).

Практическое использование

Таблица. Важнейшие аминокислоты, входящие в состав белков (цветом обозначены боковые цепи)

Сме­си L-α-А., а так­же от­дель­ные А. при­ме­ня­ют в ме­ди­ци­не для ле­че­ния боль­ных с за­бо­ле­ва­ния­ми пи­ще­ва­рит. ор­га­нов (гис­ти­дин, ме­тио­нин), при ма­ло­кро­вии, ожо­гах (ме­тио­нин), нерв­но-пси­хич. за­бо­ле­ва­ни­ях (гли­цин и глу­та­ми­но­вая ки­сло­та), при со­су­ди­стых за­бо­ле­ва­ни­ях го­лов­но­го моз­га (γ-ами­но­мас­ля­ная ки­сло­та) и т. д. Для обо­га­ще­ния кор­мов в жи­вотно­вод­ст­ве и ле­че­ния жи­вот­ных ис­поль­зу­ют­ся ли­зин, ме­тио­нин, тре­о­нин, трип­то­фан, в пи­ще­вой пром-сти – глу­та­мат на­трия и ли­зин. ω-А. и их лак­та­мы слу­жат для пром. про­из-ва по­ли­ами­дов. Аро­ма­тич. А. на­шли при­ме­не­ние в син­те­зе кра­си­те­лей и ле­кар­ст­вен­ных пре­па­ра­тов. Не­ко­то­рые L-α-А. по­лу­ча­ют мик­ро­био­ло­гич. син­те­зом (ли­зин, трип­то­фан, тре­о­нин, глу­та­ми­но­вая ки­сло­та) или вы­де­ля­ют из гид­ро­ли­за­тов бо­га­тых ими бел­ков (про­лин, ар­ги­нин, гис­ти­дин, глу­та­ми­но­вая ки­сло­та, ти­ро­зин).

bigenc.ru

Аминокислоты - что это и как принимать.

Аминокислотами называют органические вещества, состоящие из углеводородного скелета в комплексе с двумя группами: аминной плюс карбоксильной. Наличие последних двух радикалов является причиной наличия уникальных свойств, которые одновременно обладать свойствами кислот либо щелочей: 1-вые обусловлены наличием карбоксильной группы, 2-рые — наличием аминогруппы.

Незаменимые аминокислоты эффективно используются в качестве строительного материала для белков, необходимых нашему организму, для образования мышц, сухожилий, связок, кожи и волос. Они способствуют повышению эффективности тренировок в комплексе с наращиванием мышечной массы. Аминокислоты эффективно способствуют быстрому восстановлению и избавлению от болей после интенсивных тренировок. Отметим, что затраты, связанные с усвоением данного «строительного материала», достаточно высоки. Следовательно, процесс эффективно и непосредственно способствует снижению веса.

Аминокислоты в организме человека

Перейдем к рассмотрению влияния аминокислот для спортсменов для физических упражнений в целом. Для каждого человека, предпочитающего активный образ жизни, именно АК являются важными участниками протеинового обмена. Они участвуют в строительстве протеинов, способствующих наращиванию мышечной массы: от скелетной до печеночной, от мышечной до соединительной ткани. Некоторые непосредственно участвуют в обмене веществ. Аргинин – участник орнитинового цикла мочевины, являющегося уникальным механизмом, способствующим обезвреживанию аммиака, который способен образовываться в печени во время переваривания белков.

Тирозин участвует в синтезе катехоламинов – адреналина и норадреналина – гормонов, поддерживающих в тонусе сердечно-сосудистую систему, реагируя мгновенно на возникновение стрессовых ситуаций.

Аминокислота триптофан является предшественником мелатонина, являющегося гормоном сна, образующегося в области эпифиза, являющегося шишковидным телом головного мозга. При нехватке данного элемента происходит усложнение процесса засыпания, развитие бессонницы и иных заболеваний, связанных с ней. 

Содержание в продуктах

Принимаемый нами комплекс аминокислот способствует поддержанию нормального азотистого равновесия. Достающийся здоровым людям с пищей азот при нормальном рационе питания, равняется выделяемой мочевине, аммониевым солям. После сложного заболевания либо при растущем организме происходит нарушение равновесия и сдвиг баланса в сторону несколько меньшего выведения азота в сравнении с полученным. С отрицательным балансом сталкиваются при старении организма, в связи с голоданием либо недостатком белков.

Аминокислоты bcaa созданы для восполнения недостатка конкретных веществ. Хотя получать элементы в натуральной форме также необходимо, что обеспечивается сбалансированным питанием. Наш организм не обходится без белковой пищи. К наиболее полноценным белкам относят молоко, а ценность растительного белка гораздо ниже. Благодаря правильному комбинированию продуктов можно добиться обеспечения необходимого количества важных для нас 20 аминокислот,например, благодаря смеси бобов и кукурузы. В этих продуктах содержится органичное сочетание необходимых веществ. Для получения суточной нормы достаточно 500-т грамм молочных продуктов, не забывая и о другой еде. 

Аминокислоты в спортивном питанииэффективны в качестве незаменимого источника восполнения энергии и содержатся в следующих продуктах:

  • Лейцин: от орехах до нешлифованного, бурого риса, от соевой муки до чечевицы, от овса до всех семян.

  • Фенилаланин: от молочных продуктов до авокадо, от бобовых до семечек и орехов. Образуется в процессе распада аспартама — сахарозаменителя, зачастую используемого в пищевых продуктах.

  • Валин аминокислота: от всех молочных продуктов до соевого протеина, от зерновых до грибов и арахиса.

  • Триптофан: от овса до бобовых, от молока до творога, от йогурта до кедровых орешков, от арахиса до кунжута и семечек.

  • Изолейцин: от орехов, особенно миндаля и кешью, до всех семян, от ржи до сои, от гороха до чечевицы.

  • Лизин аминокислота: от сыра до молочных продуктов, от пшеницы до картофеля.

  • Метионин: от чечевицы до фасоли, от чеснока до лука, от сои до бобов, от всех семян до молочных продуктов.

  • Треонин: от молока до йогурта, от творога до сыра, от зелёных овощей до зерновых, от бобов до орехов.

  • Аргинин: от тыквенных семечек до кунжута, от арахиса до изюма, от швейцарского сыра до шоколада.

  • Гистидин: от молочных продуктов до риса, от пшеницы до ржи, от соевых бобов до арахиса.

Дозировка и правила приема

Производители обязаны указывать, как принимать аминокислоты, размещая информацию на упаковке. Этих рекомендаций следует придерживаться. Хотя иногда можно допускать превышение дозировки, пятью граммами редко ограничиваются. Для организма подобная поддержка окажется практически незаметной. Спортсменам, занимающимся силовыми видами, рекомендуется прием от 20-ти до 30-ти грамм комплексных АК ежесуточно. 

Анализ на аминокислоты показывает, что с указанным выше количеством добавок можно добиваться поддержания мускулатуры и прочих положительных эффектов. Желательно прием суточной дозы осуществлять в несколько приемов, чтобы добиться более полного усвоения спортивного питания. 

Как же принимать аминокислоты всаа? 

  • До начала тренировки. Это важно для наполнения крови свободными АК и сбережения мышечных волокон от распада в связи с силовыми нагрузками.

  • В период тренировки. В течение получаса интенсивных занятий организм практически остается без энергетических запасов. Благодаря приему АК можно эффективно поддержать работу тела.

  • По завершении тренировки. Это поможет снизить воздействие катаболических процессов, уберечь мышцы, подкормить их для восстановления.

В те дни, когда спортсмен делает перерыв между занятиями, принятие АК способствует остановке процесса распада мышечных волокон и поддержке нормального уровня свободных АК. Например, габа аминокислотаспособствует снятию нервного напряжения, оказанию хорошего тонизирующего и успокаивающего эффекта. В целебных целях с помощью данного биогенного вещества улучшают половую дисфункцию, благодаря оказанию сильного релаксирующего влияния.

Для чего нужны аминокислоты в спорте? Существуют комплексные формы, а также изолированные, содержащие единственную АК. Физически активным людям рекомендуется прием незаменимых аминокислот. Они пособствуют значительному повышению работоспособности организма, при сохранении собственных ресурсов. Норма приема соответствует вашим индивидуальным потребностям. Это особенно касается подростков, что обусловлено активным развитием организма.

Важно для спортсменов обеспечивать увеличенную дозу данных веществ. Необходимость в незаменимых АК связана с восполнением энергетических запасов, обусловленных интенсивными занятиями. Прием пищевых добавок осуществляется исключительно после консультации с врачом. Продажа добавок осуществляется без рецепта. Не следует заниматься бесконтрольным приемом подобных препаратов. Гораздо эффективней будет употребление этих веществ в натуральной форме. 

Если в рацион включать полноценно здоровую пищу, в сочетании с активным образом, можно прекрасно обходиться без пищевых добавок. При этом функционирование организма будет безукоризненным, работа органов будет происходить без единого сбоя. 

Норма потребления АК соответствует индивидуальным особенностям. Об их недостатке можно судить по следующим симптомам:

  • От потери аппетита до общей слабости;

  • От головокружений до постоянной сонливости;

  • От ослабления иммунитета до анемии;

  • От выпадения волос до ухудшения состояния кожи;

  • От замедления роста до задержек в развитии.

Благодаря употреблению АК можно добиться значительного улучшения тренировочного процесса, насыщения органов и мышц питательными веществами и сокращения периодов восстановления.Необходимо при этом помнить о правильном питании, ведь АК не могут создать полноценную замену пище. Данная добавка является безопасной для употребления, не вызывая привыкания. В соответствии с вашими целями (восстановлением после тренировочного процесса либо набором мышечной массы), можно ограничиться приемом определенной АК. 

Побочные действия  

Если потребитель будет руководствоваться указанными выше дозировками и правилами приема, никаких проблем не возникнет. Исключительно из-за сильного превышения суточной дозы возможно возникновение нарушений, связанных с работой печени и почек, являющихся главными фильтрами организма.Именно такими критериями определяется вред и польза аминокислот в спорте. 

Следует помнить об ограничениях в приеме, при возникновении любых недомоганий начать со снижения дозировки и даже отказа от добавок. Затем обратиться врачу, чтобы проконсультироваться по поводу безопасного спортивного питания. 

Для производства АК комплексов зачастую используют сыворотку. Если потребители страдают аллергией, связанной с молочными продуктами и непереносимостью лактозы, с подобными добавками следует обращаться осторожно. 

Среди тревожных симптомов упомянем о:

  • сыпи или раздражении на кожных покровах; 

  • ухудшении дыхания; 

  • замутнении сознания; 

  • расстройстве пищеварения. 

При возникновении данных проявлений следует прекратить прием кето аналогов аминокислот и обратиться на врачебной помощью. Во многих аминокислотных комплексах содержится набор простых углеводов, что проблематично для пользователей, страдающих диабетом. Диабетики могут наблюдать ухудшение самочувствия по следующим симптомам:

  • частому мочеиспусканию; 

  • резкому снижению активности;

  • тошноте; 

  • сильной жажде;

  • головной боли; 

  • обморокам; 

  • проблемам с ЖКТ. 

Диабетик, принимающий жидкие аминокислоты, при обнаружении подобных симптомов должен незамедлительно обратиться к эндокринологу, отказавшись от добавок. 

Прием комплекса АК рекомендуется для набора массы в сочетании с так называемой сушкой. Прием протеина не стоит сочетать с дополнительной подпиткой. Дозировку определяют в зависимости от вашего веса и рекомендаций на упаковке. Это обусловлено различным процентом чистых АК в продуктах. В среднем диапазон приема ограничен ежесуточно 10-тью – 20-тью граммами, в соответствии с целями тренинга, временем и длительностью тренировки. Усвояемость каждой формы считается индивидуальной, кому-то удобней принимать порошковую форму, кому-то – в капсулах либо в жидком виде.

При аллергии у детей на белки, содержащиеся в коровьем молоке, рекомендуется прием Нутрилон аминокислот. Данную смесь разработали специально для малышей, нуждающихся в правильном интеллектуальном развитии. Ее можно использовать в качестве питания для новорожденных деток. 

Список аминокислот

В соответствии с наиболее популярной классификацией, существуют заменимые и незаменимые аминокислоты. Процессы, связанные с синтезом заменимых веществ в основном происходят в печени. Среди них отметим следующие АК:

1. Тирозин способствует улучшению внимания, выработке дофамина, снабжению энергией;

2. Серин является исходным материалом, способствующим образованию креатина, а таккже трансформации гликогена;

3. Таурин аминокислота обладает функциями кардиотонического, антикатарактного, метаболического действия, обладает огромной ролью для липидного обмена, оптимизации энергетических процессов;

4. Орнитин обладает антикатаболическим воздействием, способствует улучшению атлетических показателей;

5. Пролин аминокислотаспособствует обеспечению организма энергией;

6. Глютамин способствует эффективности роста мышц;

7. Глицин аминокислота способствует повышению мозговой активности, защите от психоэмоциональных напряжений;

8. Действие гамма-аминомаслянной кислоты является аналогичным транквилизатору, способствует улучшению кровоснабжения мозга;

9. Глютамовая кислота эффективна для утилизации глюкозы;

10. Цитруллин способствует улучшению питания мышц, укреплению иммунной системы, обеспечению азотистого баланса, повышению выносливости и снижению утомляемости;

11. Цистеин обеспечивает детоксикацию, способствуя повышению спортивной выносливости;

12. Аспарагин принимает участие в образуемых пиримидиновых основаниях, в обменных процессах азотистых веществ;

13. Аланин является веществом, входящим в состав биологически активных соединений, участниккком глюкозо-аланинового цикла;

14. Аргинин является донатором азота, способствует снижению параметров, связанных с вредным холестерином, усилению секреции гормона роста, улучшению транспортировки креатина, ускорению восстановления.

Незаменимыми называют ак, оказывающиеся в составе добавок, самостоятельно не синтезирующихся в организме. 

1. Валин обладает стимулирующим действием, способствует метаболизму, ускоренному восстановлению после интенсивных тренировок;

2. Гистидин способствует восстановлению тканей, содержится в гемоглобине;

3. Лейцин способствует защите мышечных тканей, эффективен для избавления от артритов, повышения анаболической реакции мышц;

4. Изолейцин способствует клеткам в усвоении глюкозы, усилении роста мышц, синтезе гемоглобина;

5. Лизин известен противовирусными свойствами, необходим для стимулирования иммунитета, способствует профилактике остеопороза;

6. Метионин обладает метаболическим и гепатопротекторным действием, является участником обмена серосодержащих аминокислот;

7. Фенилаланин эффективен для борьбы с различными заболеваниями: от витилиго до депрессии и СДВГ;

8. Триптофан является участником выработки серотонина, синтеза мелатонина, известен положительным влиянием на иммунную систему;

9.Треонин способствует поддержке баланса белков в организме.

crossfit.ru

Химические свойства аминокислот | Химия онлайн

Аминокислоты являются амфотерными соединениями, для них характерны кислотно-основные свойства. Это обусловлено наличием в их молекулах функциональных групп кислотного (-СООН) и основного (-NH2) характера.

Кислотно-основное равновесие в водных растворах

В водных растворах и твердом состоянии аминокислоты существуют в виде внутренних солей.

Ионизация молекул аминокислот в водных растворах зависит от кислотного или щелочного характера среды:

В кислой среде молекулы аминокислот представляю собой катион. В щелочной среде молекулы аминокислот представляют собой анион. В нейтральной среде аминокислоты представляют собой цвиттер-ион или биполярный ион.

Аминокислоты в твердом состоянии всегда существуют в виде биполярного, двухзарядного иона — цвиттер-иона.

Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток.

1. Взаимодействие внутри молекулы – образование внутренних солей (биполярных ионов)

Молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

Карбоксильная группа аминокислоты отщепляет ион водорода, который затем присоединяется к аминогруппе той же молекулы по месту неподеленной электронной пары азота. В результате действие функциональных групп нейтрализуется, образуется так называемая внутренняя соль.

Водные растворы аминокислот в зависимости от количества функциональных групп имеют нейтральную, кислую или щелочную среду.

Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.

Видеоопыт «Свойства аминоуксусной кислоты»

а) моноаминомонокарбоновые кислоты (нейтральные кислоты)

Внутримолекулярная нейтрализация  — образуется биполярный цвиттер-ион.

Водные растворы моноаминомонокарбоновых кислот нейтральны (рН≈7).

б) моноаминодикарбоновые кислоты (кислые аминокислоты)

Водные растворы моноаминодикарбоновых кислот имеют рН<7 (кислая среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток ионов водорода Н+.

в) диаминомонокарбоновые кислоты (основные аминокислоты)

Водные растворы диаминомонокарбоновых кислот имеют рН>7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН.

2. Взаимодействие с основаниями и кислотами

Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН).

Как кислота (участвует карбоксильная группа)

Как карбоновые кислоты α-аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

а) взаимодействие с основаниями 

Образуются соли:

б) взаимодействие со спиртами (р. этерификации)

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

в) взаимодействие с  аммиаком 

Образуются амиды:

Как основание (участвует аминогруппа)

а) взаимодействие с сильными кислотами

Подобно аминам, аминокислоты реагируют с сильными кислотами с образованием солей аммония:

б) взаимодействие с азотистой кислотой (р. дезаминирования)

Подобно первичным аминам, аминокислоты реагируют с азотистой кислотой, при этом аминогруппа превращается в гидроксогруппу, а аминокислота – в гидроксикислоту:

Измерение объёма выделившегося азота позволяет определить количество аминокислоты (метод Ван-Слайка).

3. Внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона).

4. Межмолекулярное взаимодействие α-аминокислот – образование пептидов (р. поликонденсации)

При взаимодействии карбоксильной группы одной молекулы аминокислоты и аминогруппы другой молекулы аминокислоты образуются пептиды. При взаимодействии двух α-аминокислот образуется дипептид.

Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д.

Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е представляют собой продукт поликонденсации a-аминокислот.

5. Качественные реакции!

а) нингидриновая реакция

Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета:

Иминокислота пролин дает с нингидрином  желтое окрашивание.

б) с ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Видеоопыт «Образование медной соли аминоуксусной кислоты»

Аминокислоты

himija-online.ru

Общая характеристика аминокислот — Аминокислоты — Статьи

Аминокислоты — органические кислоты, молекулы которых содержат одну или несколько аминогрупп (NH2-группы). Представляют основные структурные элементы белков. Белки пищи в организме человека расщепляются до аминокислот. Определенная часть аминокислот, в свою очередь, расщепляется до органических кетокислот, из которых в организме вновь синтезируются новые аминокислоты, а затем белки. В природе обнаружено свыше 20 аминокислот.

Аминокислоты всасываются из желудочно-кишечного тракта и с кровью поступают во все органы и ткани, где используются для синтеза белков и подвергаются различным превращениям. В крови поддерживается постоянная концентрация аминокислот. Из организма выделяется около 1 г азота аминокислот в сутки. В мышцах, ткани головного мозга и печени содержание свободных аминокислот во много раз выше, чем в крови, и менее постоянно. Концентрация аминокислот в крови позволяет судить о функциональном состоянии печени и почек. Содержание аминокислот в крови может заметно нарастать при нарушениях функции почек, лихорадочных состояниях, заболеваниях, связанных с повышенным содержанием белка.

Аминокислоты подразделяются на незаменимые  (валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин), частично заменимые   (аргинин и гистидин) и заменимые  (аланин, аспарагин, аспарагиновая кислота, глицин, глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин).

Незаменимые аминокислоты не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Они должны поступать в организм с пищей. При недостатке незаменимых аминокислот задерживается рост и развитие организма. Оптимальное содержание незаменимых аминокислот в пищевом белке зависит от возраста, пола и профессии человека, а также от других причин. Заменимые аминокислоты синтезируются в организме человека.

Аминокислоты представляют собой структурные химические единицы, образующие белки.

Любой живой организм состоит из белков. Разнообразные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти; белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками.

Дефицит белков в организме может привести к нарушению водного баланса, что вызывает отеки. Каждый белок в организме уникален и существует для специальных целей. Белки не являются взаимозаменяемыми. Они синтезируются в организме из аминокислот, которые образуются в результате расщепления белков, находящихся в пищевых продуктах. Таким образом, именно аминокислоты, а не сами белки являются наиболее ценными элементами питания.

Какие еще функции выполняют аминокислоты?

Помимо того, что аминокислоты образуют белки, входящие в состав тканей и органов человеческого организма так некоторые из них:

  • Выполняют роль нейромедиаторов или являются их предшественниками. Нейромедиаторы — это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга.
  • Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции.
  • Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.
Что будет, если аминокислот не хватает?

В организме человека многие из аминокислот синтезируются в печени. Однако некоторые из них не могут быть синтезированы в организме, поэтому человек обязательно должен получать их с пищей. К таким незаменимым аминокислотам относятся:

  • гистидин,
  • изолейцин,
  • лейцин,
  • лизин,
  • метионин,
  • фенилаланин,
  • треонин,
  • триптофан,
  • валин.

Аминокислоты, которые синтезируются в печени, включают:

  • аланин,
  • аргинин,
  • аспарагин,
  • аспарагиновую кислоту,
  • цитруллин,
  • цистеин,
  • гамма-аминомасляную кислоту,
  • глютамовую кислоту,
  • глютамин,
  • глицин,
  • орнитин,
  • пролин,
  • серин,
  • таурин,
  • тирозин.

Процесс синтеза белков постоянно идет в организме. В случае, когда хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным нарушениям — от расстройств пищеварения до депрессии и замедления роста.

Многие факторы приводят к этому, даже, если ваше питание сбалансировано, и вы потребляете достаточное количество белка. Нарушение всасывания в желудочно-кишечном тракте, инфекция, травма, стресс, прием некоторых лекарственных препаратов, процесс старения и дисбаланс других питательных веществ в организме — все это может привести к дефициту незаменимых аминокислот.

Какие аминокислоты следует принимать?

В настоящее время можно получать незаменимые и заменимые аминокислоты в виде биологически активных пищевых добавок. Это особенно важно при различных заболеваниях и при применении редукционных диет. Вегетарианцам необходимы такие добавки, содержащие незаменимые аминокислоты, чтобы организм получал все необходимое для нормального синтеза белков.

При выборе добавки, содержащей аминокислоты, предпочтение следует отдавать продуктам, содержащим L-кристаллические аминокислоты. Большинство аминокислот существует в виде двух форм, химическая структура одной является зеркальным отображением другой. Они называются D- и L-формами, например D-цистин и L-цистин. D означает dextra (правая на латыни), a L — levo (соответственно, левая). Эти термины обозначают пространственное строение данной молекулы. Белки животных и растительных организмов созданы L-формами аминокислот (за исключением фенилаланина, который представлен D,L- формами). Таким образом, только L-аминокислоты являются биологически активными участниками метаболизма.

Свободные, или несвязанные, аминокислоты представляют собой наиболее чистую форму. Они не нуждаются в переваривании и абсорбируются непосредственно в кровоток. После приема внутрь всасываются очень быстро и, как правило, не вызывают аллергических реакций.

Войдите на сайт, чтобы оставлять комментарии

www.butakova.com

Аминокислоты – что это такое? Для чего нужны аминокислоты?

В современном мире на рынке спортивного питания можно найти множество различных добавок, которые помогут вам в достижении той или иной цели. На сегодняшний день, самыми популярными добавками являются: аминокислоты и протеин. О протеине мы уже говорили, теперь пришло время разобрать аминокислоты! Что это такое? Для чего нужны аминокислоты? Кому они нужны и какие есть виды аминокислот?

Аминокислоты – это вещества, которые образуют белок в организме. Они являются ключевым компонентом в нашей жизнедеятельности, так как все живые организмы нуждаются в белках. Данные вещества можно получить из обычной пищи (мясо, рыба, яйца, творог …), или из специальных добавок.

 

Для чего нужны аминокислоты?

Аминокислоты имеют множество функций в организме. Вот некоторые из них: рост мышечной массы, восстановление, выработка гормонов, выработка антител, выработка ферментов, укрепление иммунной системы, предотвращение катаболизма, выполняют роль нейромедиаторов и т.д.

 

Данные вещества завоевали большую популярность в сфере бодибилдинга и фитнеса. И это не удивительно, так как с их помощью можно ускорить рост мышечной массы и процесс похудения, а так же сохранить набранные мышцы во время сушки.

 

Вот, несколько самых важных эффектов:

  1. Больше энергии. Аминокислоты метаболизируются по иному пути в отличии от углеводов, поэтому организм во время тренинга может получать гораздо больше энергии, если аминокислотный пул заполнен
  2. Повышенный синтез белка. Аминокислоты стимулируют секрецию анаболического гормона — инсулина, а также активируют mTOR, два этих механизма способны запускать мышечный рост. Сами аминокислоты используются в качестве строительного материала для белков
  3. Предотвращение катаболизма. Аминокислоты обладают выраженным антикатаболическим действием, которое особенно необходимо после тренировки, а также во время цикла похудения или сушки
  4. Помогают быстрее сжигать подкожный жир. Аминокислоты способствуют сжиганию жира за счет экспрессии лептина в адипоцитах посредством mTOR

 

Кому нужны аминокислоты?

Данная добавка подойдет тем мужчинам и женщинам, которые подвергаются тяжелым физическим нагрузкам (бодибилдинг, фитнес, бокс, спринт, единоборства). Аминокислоты помогут вам лучше восстанавливаться, быстрее наращивать сухую мышечную массу и сжигать подкожный жир.

 

Какие есть виды аминокислот?

По своей сущности аминокислоты можно разделить на два вида: заменимые и незаменимые. Заменимые – это те вещества, которые способны самостоятельно вырабатываться в нашем организме. Незаменимые – это те вещества, которые не способны самостоятельно вырабатываться в нашем организме. Именно поэтому, очень важно, что бы данные незаменимые аминокислоты попадали к нам с пищей или из спортивных добавок.

 

Насчитывают около 28 различных аминокислот (9 – незаменимых и 19 – заменимых).

 
 

Незаменимые аминокислоты:

 

Валин – является важнейшим компонентом, который помогает восстанавливать разрушенные мышечные ткани и поддерживает нормальный обмен азота в человеческом теле. Препятствует снижению уровня серотонина и повышает мышечную координацию. Входит в состав BCAA (основной материал для построения новых мышц). Лучшие источники валина в питании: говядина, куриное филе, филе лосося, куриные яйца, грецкие орехи.

 

Гистидин – важный компонент, который помогает восстанавливать разрушенные мышечные ткани. Присутствует в миелиновых оболочках, которые защищают нервные клетки. Так же, данная аминокислота охраняет наше тело от повреждающего действия радиации и выводит тяжелые металлы. Из гистидина синтезируется карнозин – мощный мышечный антиоксидант. Лучшие источники гистидина в питании: тунец, лосось, куриное филе, арахис, чечевица.

 

Изолейцин – одна из важнейших незаменимых аминокислот, которая участвует в синтезе гемоглобина и нормализует уровень сахара в крови. Изолейцин нормализует процессы энергообеспечения и укрепляет синтез эпидермиса (наружный слой кожи). Входит в состав BCAA (основной материал для построения новых мышц). Лучшие источники изолейцина в питании: куриные яйца, сыр, рыба, индейка, куриное филе.

 

Лейцин – важнейший компонент для укрепления и поддержания иммунной системы на должном уровне. Основные функции лейцина: нормализует метаболические процессы, подавляет разрушение белковых молекул, усиливает синтез белка, подавляет распад глюкозы, повышает секрецию инсулина и нормализует водный обмен в нашем теле. Входит в состав BCAA (основной материал для построения новых мышц). Лучшие источники лейцина в питании: говядина, телятина, куриное филе, рыба, филе индейки, творог, молоко, арахис.

 

Лизин – принимает участие в костном формировании и положительно влияет на усвоение кальция. Так же, он принимает участие в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Лизин положительно влияет на работу сердца, понижает уровень триглицеридов в сыворотке крови и является аминокислотой противовирусного действия. Лучшие источники лизина в питании: куриные яйца, говядина, телятина, баранина, куриное филе, филе индейки, фасоль, горох, треска.

 

Метионин – одна из важнейших незаменимых аминокислот, которая участвует в жировом обмене и положительно влияет на синтез таурина и цистеина. Так же, метионин обладает такими положительными функциями, как: улучшение пищеварения, улучшение мышечной выносливости, понижает уровень плохого холестерина, положительно влияет на рост волос, положительно влияет на печень, защищает от повреждающего действия радиации и выводит тяжелые металлы. Лучшие источники метионина в питании: куриное филе, филе индейки, телятина, творог, бобовые, арахис.

 

 

Треонин – поддерживает стабильность белкового метаболизма в теле человека. Принимает участие в синтезе коллагена и эластина. Препятствует отложению жира в печени. Положительно влияет на сердечно – сосудистую систему и ЦНС. Лучшие источники треонина в питании: куриное филе, филе индейки, говядина, телятина, овсянка, гречка, рис, грибы.

 

Триптофан – важнейшая аминокислота, которая принимает участие в синтезе серотонина. Он подымает настроение, подавляет депрессию и избавляет от бессонницы. Женщинам следует обратить должное внимание на эту аминокислоту, так как она облегчает предменструальный синдром. Лучшие источники триптофана в питании: сыр, рыба, мясо, бобовые, грибы, творог, кедровые орехи, арахис.

 

Фенилаланин – улучшает настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит. Он входит в состав белков организма, которые составляют мышцы, сухожилия, связки и другие органы. Лучшие источники фенилаланина в питании: мясо, куриные яйца, бобовые, орехи.


 

Заменимые аминокислоты:

 

Аланин – необходимая аминокислота для нашего организма, которая принимает участие в метаболизме глюкозы. Она обладает такими положительными свойствами, как: повышает сокращение мышц, служит как источник энергии для мышц и ЦНС, нормализует уровень сахара в крови и стимулирует иммунную систему. Лучшие источники аланина в питании: мясо (телятина, говядина, птица), молоко, сыр.

 

Аргинин – имеет множество положительных свойств, что делает данную аминокислоту очень ценной и востребованной. Положительные свойства аргинина: препятствует росту опухолей, способствует дезинтоксикационным процессам в печени, нормализует азотный баланс, усиливает выработку ГР, усиливает выработку сперматозоидов у мужчин, усиливает выработку инсулина, улучшает кровоток в мышцах и повышает иммунитет. Лучшие источники аргинина в питании: свинина, куриное филе, филе лосося, куриные яйца, кедровые орехи, грецкие орехи, тыквенные семечки.

 

Аспарагин – нормализует работу центральной нервной системы. Повышает иммунитет за счет увеличения продукции иммуноглобулинов и антител. Лучшие источники аспарагина в питании: молоко, сыворотка, мясо, птица, морепродукты, спаржа, бобовые, орехи.

 

Цитруллин – данная аминокислота не столько важна для наших мышц, как для организма. Он способствует повышению энергообеспечения, укрепляет иммунную систему, усиливает выносливость и способствует улучшению эректильной функции. Лучшие источники цитруллина в питании: арбуз, арахис, соевые бобы.

 

Цистеин – аминокислота, которая принимает важнейшее участие в процессах формирования тканей кожи, ногтей и волос. Так же, он принимает участие в образовании коллагена и улучшает эластичность кожи. Цистеин является мощнейшим антиоксидантом, который обезвреживает различные токсичные вещества и защищает организм от радиации. Лучшие источники цистеина в питании: куриное филе, филе индейки, свинина, куриные яйца, молоко, красный перец, лук, чеснок.

 

Цистин – аминокислота, которая принимает важнейшее участие в процессах формирования тканей кожи, ногтей и волос. Играет крайне важную роль в формировании и поддержании третичной структуры белков и пептидов и, соответственно, их биологической активности. Лучшие источники цистина в питании: мясо, рыба, соя, овес, пшеница.

 

Диметилглицин – входит в состав некоторых гормонов, нейромедиаторов и ДНК. Лучшие источники диметилглицина в питании: мясо, семечки, зерна, бобовые, печень.

 

Глютамин – необходимая аминокислота для нормального роста мышечной массы. Положительные свойства глютамина: укрепляет иммунитет, принимает участие в синтезе белка в мышечных тканях, является антикатаболиком (подавляет гормон – кортизол), ускоряет восстановительные процессы, уменьшает шанс получить перетренированность, нормализует уровень сахара в крови и повышает работоспособность головного мозга. Лучшие источники глютамина в питании: говядина, курица, рыба, куриные яйца, молочка, капуста, свекла, бобы, шпинат, петрушка.

 

Глутатион – является антиоксидантом, который положительно влияет на жировой обмен и предотвращает возникновения атеросклероза. Так же, он защищает организм от токсинов, свободных радикалов, болезней и вирусов. Лучшие источники глутатиона в питании: лук, чеснок, капуста, авокадо, орехи, семечки, птица, яичные желтки, шпинат, сельдерей.

 

Глицин – принимает участие в синтезе нуклеиновых кислот, желчных кислот и заменимых аминокислот. Помимо этого, он обладает такими полезными функциями, как: восстанавливает поврежденные ткани, положительно влияет на ЦНС, повышает настроение, улучшает качество сна, обладает противовоспалительным действием. Лучшие источники глицина в питании: мясо, рыба, молочка, куриные яйца.

 

 

Гамма — аминомасляная кислота (GABA) – важнейшая аминокислота, которая является нейромедиатором центральной нервной системы и головного мозга. GABA завоевала большую популярность в бодибилдинге из-за таких положительных эффектов, как: усиленная выработка гормона роста, усиленная жесткость мускулатуры, повышенное сжигание жира, улучшение качества сна, обладает успокаивающим эффектом (предотвращает перевозбуждение нервных клеток). Лучшие источники GABA в питании: листья чая и кофе, нитевидные грибы, сок растений рода крестоцветных.

 

Глутаминовая кислота – служит нейромедиатором, который передает импульсы в ЦНС. Положительно влияет на углеводный обмен и может служить источником энергии для головного мозга. Глутаминовая кислота принимает участие в синтезе нуклеиновых кислот и повышает проницаемость мышечных клеток для ионов калия. Лучшие источники глутаминовой кислота в питании: коровье молоко, сыр пармезан, мясо цыпленка, утка, говядина, свинина, треска, макрель, форель, зеленый горошек.

 

Гистамин – служит нейротрансмиттером в центральной нервной системе. Улучшает половое влечение и повышается проницаемость кровеносных сосудов. Лучшие источники гистамина в питании: молоко, творог, овсянка, печень, птица, куриные яйца.


 

Орнитин – завоевал большую популярность в бодибилдинге из-за таких положительных эффектов, как: усиленная выработка гормона роста, положительное влияние на печень, повышенное сжигание жира, увеличение секреции инсулина, обладает антикатаболическим эффектом. Лучшие источники орнитина в питании: куриные яйца, мясо, рыба, молочные продукты.

 

Пролин – положительно влияет на состояние кожи и сердечно – сосудистую систему, укрепляет суставы и связки. Лучшие источники пролина в питании: ржаной хлеб, рис, говядина, баранина, сельдь, тунец, сыр.

 

Серин – положительно влияет на жировой обмен и иммунную систему. Лучшие источники серина в питании: тыквенные семечки, орехи, куриные яйца, молоко, птица, сельдь, скумбрия, баранина.

 

Таурин – необходим для нормального обмена натрия, калия, кальция и магния. Оказывает положительное влияние на головной мозг и улучшает обменные процессы. Лучшие источники таурина в питании: мясо, рыба, устрицы, куриные яйца, молоко.

 

Тирозин – принимает участие в выработке мелатонина, положительно влияет на щитовидную железу и гипофиз, подавляет аппетит. Тирозин является аминокислотой творчества (повышает творческий процесс и позволяет думать масштабнее). Лучшие источники тирозина в питании: миндаль, авокадо, бананы, семечки тыквы, кунжут.

 

Карнитин – можно отнести к аминокислотам, так как он имеет схожую химическую структуру. Он помогает перерабатывать жирные кислоты в энергию. Положительно влияет на работу сердца, печени. Карнитин повышает выносливость, улучает количество и качество спермы, замедляет старение, понижает уровень плохого холестерина. Лучшие источники карнитина в питании: говядина, баранина, молочные продукты, печень, телятина, индейка, свинина.

 
 

Давайте еще раз вкратце пройдемся по основным вопросам:

№1) Аминокислоты – что это такое?

Вещества, которые образуют белок в организме. Они являются ключевым компонентом в нашей жизнедеятельности, так как все живые организмы нуждаются в белках.

 

№2) Для чего нужны аминокислоты?

Они имеют множество функций в организме. Вот некоторые из них: рост мышечной массы, восстановление, выработка гормонов, выработка антител, выработка ферментов, укрепление иммунной системы, предотвращение катаболизма, выполняют роль нейромедиаторов и т.д.

 

№3) Кому нужны аминокислоты?

Данная добавка подойдет тем мужчинам и женщинам, которые подвергаются тяжелым физическим нагрузкам (бодибилдинг, фитнес, бокс, спринт, единоборства).

 

№4) Какие есть виды аминокислот?

По своей сущности аминокислоты можно разделить на два вида: заменимые и незаменимые. Насчитывают около 28 различных аминокислот (9 – незаменимых и 19 – заменимых).

Незаменимые:

  • Валин
  • Гистидин
  • Изолейцин
  • Лейцин
  • Лизин
  • Метионин
  • Треонин
  • Триптофан
  • Фенилаланин

 

Заменимые:

  • Аланин
  • Аргинин
  • Аспарагин
  • Цитруллин
  • Цистеин
  • Цистин
  • Диметилглицин
  • Глютамин
  • Глутатион
  • Глицин
  • Гамма — аминомасляная кислота (GABA)
  • Глутаминовая кислота
  • Гистамин
  • Орнитин
  • Пролин
  • Серин
  • Таурин
  • Тирозин
  • Карнитин

 

P.S. Так же, рекомендую вам выделить немного своего драгоценного времени, на просмотр данного видео. 

 

С уважением, Сергей Гарбарь

 

 

progrees.ru

Применение аминокислот | Химия онлайн

Благодаря способности аминокислот к поликонденсации образуются полиамиды – белки, пептиды, а также энант, капрон и нейлон. При поликонденсации ɛ-аминокапроновой кислоты получается полимер капрон. Из капроновой смолы получают не только волокна, но и пластмассовые изделия.

Энант, капрон и нейлон применяются в промышленности при производстве корда, прочных тканей, сетей, канатов, веревок, трикотажных и чулочных изделий.

Аминокислоты широко применяются в медицинской практике в качестве лекарственных средств.

Аминокислоты прописываются при сильном истощении, после тяжелых операций, их используют для питания больных.

Из полиаминокислот получают хороший материал для хирургии.

Аргинин в сочетании с аспартатом или глутаматом помогает при заболевании печени.

Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин – препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

В медицинских учреждениях аминокислоты применяются в качестве парентерального питания  пациентов с заболеваниями желудочно-кишечного тракта (язва желудка), при лечении болезней печени, ожогов, малокровия, при нервно-психических заболеваниях.

Глутаминовая кислота используется в детской психиатрии для лечения слабоумия и последствий родовых травм, при нарушениях мозгового кровообращения после инсульта, при атеросклерозе мозговых сосудов, потере памяти.

Гистидин иногда применяют для лечения больных гепатитами, язвенной болезнью желудка и двенадцатиперстной кишки.

Глицин является медиатором торможения в ЦНС. В медицинской практике применяется для лечения алкоголизма. Производное глицина – бетаин улучшает процессы пищеварения.

Метионин и его активные производные используются в лечении и профилактике болезней печени. Метионин защищает организм при отравлении бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды.

Некоторые аминокислоты используются в качестве самостоятельных лекарственных средств (аргинин, цистеин, ароматические аминокислоты).

Аминокислоты в сельском хозяйстве применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат недостаточное количество белков. Лизин, лейцин, метионин, треонин, триптофан добавляют в корма сельскохозяйственных животных.

Аминокислоты метионин, глутаминовая кислота и валин применяются для защиты растений от болезней, а аланин и глицин, обладающий гербицидным действием, используется для борьбы с сорняками.

Аминокислоты используются в микробиологической промышленности для приготовления культуральных сред и как реактивы.

В пищевой промышленности аминокислоты применяются в качестве вкусовых добавок.

Наиболее важны добавки лизина, триптофана и метионина к пищевым продуктам, неполноценным по содержанию этих аминокислот.

Добавка глутаминовой кислоты и ее солей к ряду продуктов придает им приятный мясной вкус, что часто используют в пищевой промышленности.

Натриевая соль глутаминовой кислоты (глутамат натрия) известна как «пищевая добавка E621» или «усилитель вкуса».

Глутаминовая кислота является важным компонентом при замораживании и консервировании.

Благодаря присутствию глицина, метионина и валина, во время термической обработки продуктов питания удается получить специфические ароматы хлебобулочных и мясных изделий.

Аминокислоты цистеин, лизин и глицин используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту; замедляющих пероксидное окисление липидов.

Глицин применяется при производстве безалкогольных напитков и приправ.

Аминокислоты также являются компонентами спортивного питания (в изготовлении которого применяется, как правило, валин, лейцин, изолейцин,  аланин, лизин, аргинин и глутамин), использующегося спортсменами, а также людьми, занимающимися бодибилдингом, фитнесом.

В химической промышленности введение в такие аминокислоты, как глутаминовая  или аспарагиновая кислоты, гидрофобных группировок дает возможность получать поверхностно-активные вещества (ПАВ), широко используемые в синтезе полимеров, а также при производстве моющих средств, эмульгаторов, добавок к моторному топливу.

Аминокислоты

himija-online.ru

Виды аминокислот и их характеристика

Всем привет! Так как вас интересуют аминокислоты — рад вас посвятить в эту тему. Статья не будет интересной, будет очень скучно. Даже картинок не будет! Да, вот так вот... Да и в общем не статья это, а техническая информация для тех кого это интересует. Итак...

Существует три группы аминокислот.

  1. Незаменимые аминокислоты — эти виды аминокислот не могут синтезироваться организмом, поэтому они должны поступать с пищей.
  2. Заменимые аминокислоты — эти виды аминокислот могут синтезироваться организмом из других составляющих.
  3. Условно заменимые аминокислоты — эти виды аминокислот обычно синтезируются организмом, но в условиях стресса (физические нагрузки, болезнь) вырабатываются в недостаточных количествах или же не синтезируются вообще.

Незаменимые

Валин — является одной из трёх аминокислот, которая имеет разветвлённые боковые цепочки. Очень активно используется мышцами. Входит в состав BCAA добавок. Содержится в зерновых, грибах, мясе, сое, арахисе, в молочных продуктах.

Изолейцин — является одной из трёх аминокислот, которая имеет разветвлённые боковые цепочки. Обеспечивает мышцы энергией.  Эта аминокислота помогает избавится от чувства усталости в мышцах. Входит в состав BCAA добавок. Играет большую роль в производстве гемоглобина в организме. Содержится в миндале, кешью, курином мясе, яйцах, рыбе, чечевице, печени, мясе, ржи, большинстве семян, сое.

Гистидин — применяется в лечении аллергических заболеваний, язвы кишечника, артритов, язвы желудка, анемии. Необходим для производства в организме белых и красных кровяных телец. Может поглощать ультрафиолетовые лучи. Содержится в тунце, лососе, свиной вырезке, говяжьем филе, куриных грудках, соевых бобах, арахисе, чечевице.

Лейцин — используется как источник энергии. Входит в состав BCAA добавок. Помогает заживлению ран, улучшает сращивание костей, и замедляет распад мышечного белка. Содержится в мясе, рыбе, буром рисе, чечевице, орехах, большинстве семян.

Треонин — не даёт жиру накопиться в печени и очень активно способствует выводу токсинов. Содержится в молочных продуктах и яйцах, а также в бобах и орехах.

Лизин — нехватка лизина в организме замедляет синтез протеина в мышцах. Витамин С вместе с лизином образуют в печени новую аминокислоту L-карнитин. Во время тренировки карнитин способствует сжиганию жира в организме, потому что использует его как топливо для работы мышц. Лизин способствует уменьшению жировой прослойки, укреплению суставов и росту костей. Лизин помогает вырабатывать коллаген, который входит в состав сухожилий и суставов. Содержится в рыбе, молочных продуктах, мясе, пшенице, орехах.

Метионин — является предшественником креатина и цистина в организме. Снижает уровень холестерина в крови. В то же время увеличивает уровень глютамина, который выступает в роли антиоксиданта в организме. Улучшает заживление тканей и выводит токсины из печени и почек. Содержится в молоке, мясе, рыбе, яйцах, бобах, фасоли, сое и чечевице.

Фенилаланин — стимулирует деятельность мозга, улучшает память и концентрацию внимания. Является одним из основных элементов в производстве коллагена. Увеличивает настроение и подавляет аппетит. Содержится в говядине, соевых бобах, рыбе, курином мясе, яйцах, молоке, твороге.

Триптофан — успокаивает и стимулирует выработку гормона роста. Содержится в мясе, бананах, овсе, сушёных финиках, арахисе, индейке, кунжуте, кедровых орехах, молоке, йогурте, твороге, рыбе, курятине.

Заменимые

Аланин — является главным компонентом всех соединительных тканей в нашем организме. Позволяет снабжать мышцы энергией из аминокислот, повышает иммунитет.

Глутаминовая кислота — необходимая кислота для деятельности мозга и для всевозможных обменных процессов. Считается потенциальным энергетиком.

Глицин — участвует в формировании организмом новых заменимых аминокислот, является компонентом структуры гемоглобина и ферментов, которые участвуют в вырабатывании энергии. Стимулирует выработку глюкагона, который активизирует гликоген. Очень успокаивает и подавляет желание есть сладкое.

О нём есть отельная статья на блоге — читайте здесь!

Аспаргиновая кислота — участвует в преобразовании углеводов в энергию для работы мышц. Снижает уровень аммиака в организме после длительных тренировок. Является стройматериалом для иммуноглобулинов и антител.

Глутамин — очень важная кислота для иммунитета. Служит источником энергии для почек, кишечника и мозга. Серьезно стимулирует деятельность мозга, улучшает память и концентрацию внимания. Есть отдельная статья про глютамин и глютаминовую кислоту.

Серин — способствует укреплению иммунной системы нашего организма. Участвует в производстве клеточной энергии. Стимулирует функции нервной системы.

Орнитин — если его принимать в больших дозах, то он увеличивает выработку гормона роста. Выводит токсины и яды из печени, стимулирует иммунитет.

Таурин — стимулирует поглощение и сжигание подкожных слоёв жира. В некоторых случаях действует как нейропередатчик в определённых участках головного мозга.

Пролин — является основным элементом, который способствует образованию всех соединительных тканей в организме.

Цистин — очень активно участвует в заживлении ранений. Укрепляет соединительные ткани. Крайне важная аминокислота для здоровья наших волос и кожи. Стимулирует антиокислительные процессы. Улучшает работоспособность белых и красных кровяных телец.

Условно заменимые

Аргинин — стимулирует гормон роста. Служит основным источником окиси азота в организме. Повышает высвобождение глюкагона и инсулина. Положительно влияет на выработку мужских гормонов, помогает образовывать коллаген и стимулировать иммунную систему. Так же имеет ярко выраженное заживляющие действие. Содержится в медикаментозных препаратах и пищевых добавках для спортсменов и добавках, применяемых для стимулирования иммунитета.

Цистеин — понижает негативное действие табака и алкоголя. Стимулирует работу красных и белых кровяных телец. Содержится во многих белках, из которых получается путем гидролиза.

Тирозин — улучшает настроение. Его недостатка обычно не возникает, потому что она в достаточном количестве поступает в организм с белками пищи.

Это все основные виды аминокислот, которые используются в спортивном питании. Возможно эта информация была для вас полезной. Удачи, друзья!

comments powered by HyperComments

P.S. Подписывайтесь на обновление блога, чтобы ничего не упустить! Приглашаю также в свой Instagram

pumping-effect.ru

Список аминокислот и их краткие характеристики

На этой странице список основных выявленных аминокислот, их краткие характеристики и роль в организме.

Среди них:

  1. Незаменимые аминокислоты — аминокислоты, которые в достаточном количестве организм не может синтезировать самостоятельно.
  2. Заменимые аминокислоты организм способен синтезировать самостоятельно из других источников.
  3. Условно-незаменимые аминокислоты — аминокислоты, которые организм способен синтезировать самостоятельно, но в недостаточно для него количестве.


Незаменимые аминокислоты


Изолейцин способствует росту мышечных тканей, обеспечивает мышцы энергией, участвует в выработке гемоглобина, уменьшает воздействие стрессовых факторов на организм. Дефицит изолейцина может приводить к возникновению беспокойств, ощущения тревоги, а так же к повышенному утомлению, чувству страха и головокружениям.
Изолейцин содержат: сыр, рыба, мясо птицы, орехи, семечки, зародыши пшеницы.

Лейцин — аминокислота, которая необходима для роста мышц. Она стабилизирует уровень глюкозы в крови, а так же способствует заживлению ран и сращиванию костей. Дефицит лейцина может привести к снижению роста тела, нарушению процессов восстановления, снижению обмена веществ и повышению уровня глюкозы в крови.
Лейцин содержат: молочные продукты, овёс, зародыши пшеницы, мясо.

Валин — аминокислота, которая вырабатывает энергию и нужна для укрепления мышц и поддержания их тонуса. Валин так же нужен для восстановления тканей печени в случае повреждения (например, при токсическом гепатите). Дефицит валина приводит к нарушению координации движения и повышению чувствительности кожи.
Валин содержат: мясо, грибы, зерновые и молочные продукты.

Лизин — эффективная аминокислота в профилактике вирусных инфекций, в частности вируса герпеса. Лизин способен увеличивать выносливость мышц и участвует в формировании коллагена (одного из основных белков опорно-двигательного аппарата). Дефицит лизина может замедлить восстановление мышечной и соединительной тканей и привести к потери костной массы тела.
Лизин содержат: бобовые и молочные продукты, мясо птицы, рыба, арахис и зародыши пшеницы.

Метионин. Эта аминокислота примечательна тем, что она содержит серу, и тем самым предотвращает заболевание кожи и ногтей, а так же влияет на рост волос. Аминокислота метионин является мощным антиоксидантом и положительно сказывается на функции печени человека. Дефицит метионина может вызывать снижение уровня гемоглобина и накопление жира в клетках печени.
Метионин содержат: бобовые продукты, нежирное мясо, творог, овощи и арахис.

Треонин — аминокислота, необходимая для формирования эмали зубов, а так же таких необходимых белков как эластин и коллаген. Треонин помогает обезвреживать токсины и предотвращает накопление жира в клетках печени. Дефицит этой аминокислоты приводит к появлению преждевременной усталости, а так же может привести к ожирению печени.
Треонин содержат: молочные продукты, мясо и яйца.

Триптофан — аминокислота, которая является предшественником серотонина (вещества, которое ответственно за наше настроение, качество сна и восприятия боли). Триптофан так же участвует в выработке мелатонина (гормона эпифиза - регулятора суточных ритмов). Дефицит триптофана в организме ассоциирован с такими заболеваниями как хронические головные боли, нарушение сна и расстройства нервной системы.
Триптофан содержат: мясо индейки, молочные продукты, яйца, орехи, семечки.

Фенилаланин — аминокислота, которая служит предшественником для выработки таких биологически активных веществ, как например норадреналин (гормон мозгового вещества надпочечников и нейромедиатор), который повышает у человека уровень бодрствования, физическую энергию и активность. Существует мнение, что фенилаланин влияет на уровень эндорфинов — так называемых гормонов радости, которые вырабатываются в нашей нервной системе. Соответственно, дефицит фенилаланина зачастую приводит к развитию депрессии.
Фенилаланин содержат: мясные и молочные продукты, овёс, зародыши пшеницы.

Гистидин — аминокислота, которая особенно необходима в период роста, при стрессе и при восстановлении после болезней и травм. Гистидин так же участвует в усвоении таких важных микроэлементов, как цинк и медь. Дефицит гистидина может привести к появлению болей и воспалению мышечных тканей, а так же к ослаблению слуха.
Гистидин содержат: мясо, молочные продукты и зародыши пшеницы.

Заменимые аминокислоты


Аргинин — основной донатор оксида азота и его переносчик. Это аминокислота, которая влияет практически на все функции организма, в особенности на иммунную систему, а так же на репродуктивную сферу человека — способствует выведению токсических отходов обмена веществ. Аргинин, так же, влияет на аминорецепторы поджелудочной железы, усиливая выделение инсулина, тем самым снижая уровень глюкозы в крови. Так же, эта аминокислота является тем веществом, которая стимулирует выработку гормона роста, необходимого для восстановления нашего опорно-двигательного аппарата. Дефицит аргинина может привести к замедлению темпов роста, увеличению жировой массы тела. К тому же, нехватка аргинина способствует повышению артериального давления.
Аргинин содержат: мясо и молочные продукты, орехи, овёс, кукуруза, кунжут, изюм, шоколад, желатин. Самостоятельно в организме аргинин вырабатывается из орнитина.

Аланин — аминокислота, которая является важным источником энергии для мышечных тканей, центральной нервной системы и головного мозга. Путём выработки антител аланин укрепляет иммунную систему. Так же, эта аминокислота играет активную роль в метаболизме сахаров (аланин легко превращается в печени в глюкозу и наоборот) и органических кислот, которые поддерживают кислотно-щелочное равновесие.
Аланин содержат: мясо, морепродукты, яичные белки, бобовые, орехи, соя, коричневый рис, кукуруза.

Аспарагин (аспартовая кислота ) — играет важную роль в синтезе аммиака, повышает сопротивляемость усталости, участвует в преобразовании углеводов в мышечную энергию. За счет повышения продукции иммуноглобулинов и антител аспарагин стимулирует иммунитет. Так же, аспартовая кислота необходима для поддержания баланса в процессах, происходящих в центральной нервной системе; препятствует как чрезмерному возбуждению, так и излишнему торможению.
Аспарагин содержат: молочные продукты, мясо, морепродукты, яйца, рыба, бобовые, различные орехи, помидоры и спаржа.

Глутамин является активным участником азотного обмена, помогает удалять избыток аммиака из тканей, важен для нормализации уровня сахара в крови, необходим для синтеза ДНК и РНК. Глутамин увеличивает количество гамма-аминомасляной кислоты, необходимую для поддержания нормальной работы головного мозга, поддерживает нормальное кислотно-щелочное равновесие в организме. Так как глутамин улучшает деятельность мозга, поэтому эта аминокислота применяется при эпилепсии, синдроме хронической усталости, импотенции, шизофрении и сенильной деменции.
Глутамин содержат: молочные продукты, мясо, рыба, бобовые, а так же содержится в 60% белков, вырабатываемых человеком.

Глицин — аминокислота, которая активно участвует в обеспечении кислородом процесса образования новых клеток. Глицин является важным участником выработки гормонов, которые ответственны за усиление иммунной системы.
Глицин содержат: мясо (в большей степени говядина), печень различных животных, желатин, рыба, яйца, молочные продукты. В организме самостоятельно вырабатывается печенью из холина либо из таких аминокислот, как треонин или серин.

Карнитин — транспортный агент жирных кислот в митохондриальный матрикс. Печень и почки из двух других аминокислот — лизина и метионина в небольшом количестве вырабатывают карнитин. Карнитин повышает эффективность антиоксидантов — витаминов С и Е, а так же, окисляет жиры в организме, тем самым способствуя их выведению, что предотвращает прирост жировых запасов (поэтому, эта аминокислота важна для уменьшения веса и снижения риска сердечных заболеваний). Считается, что для наилучшей утилизации жира дневная норма карнитина должна составлять 1500 миллиграммов. Помимо этого, креатин способствует обезвреживанию и удалению из организма некоторых чужеродных веществ, оказывает успокаивающее действие на нервную систему. Дефицит креатина ведёт к слабости в мышцах, снижению работоспособности и быстрой утомляемости. Также отмечаются нарушения деятельности сердца, печени и почек. Вследствие более медленного окисления жиров при недостатке карнитина у человека формируется избыточная масса тела.
Карнитин сдержат: молочные продукты, рыба, мясные и субпродукты. Красное мясо — лидер по содержанию карнитина. Самостоятельно карнитин вырабатывается в почках, печени и поджелудочной железе естественным путем из аминокислот глицина, аргинина и метионина.

Орнитин — аминокислота, которая необходима для работы печени и иммунной системы. Орнитин способствует выработке гормона роста, который в комбинации с Аргинином и Карнитином способствует вторичному использованию в обмене веществ излишков жира.
В организме самостоятельно вырабатывается из аргинина. А аргинин содержат: кедровые орешки, тыквенные семечки, арахис и кунжутное семя.

Пролин является одним из основных компонентов коллагена — белков, которые в высоких концентрациях содержатся в костях и соединительных тканях. Пролин так же участвует в поддержании работоспособности и укреплении сердечной мышцы, участвует в восстановлении тканей, суставов, сухожилий и связок после повреждений. Дефицит этой аминокислоты может заметно повысить утомляемость.
Пролин содержат: яйца, молочные продукты, мясо, пшеница, фруктовые соки. В организме самостоятельно вырабатывается из из глутаминовой кислоты и орнитина.

Серин — важная аминокислота для производства клеточной энергии - участвует в запасании печенью и мышцами гликогена; активно участвует в укреплении иммунной системы, обеспечивая её антителами; стимулирует функции памяти и нервной системы, а так же, формирует жировые «чехлы» вокруг нервных волокон.
Серин содержат: молочные и мясные продукты, арахисе, пшеничной клейковине и соевых продуктах. В организме самостоятельно вырабатывается из из глицина и треонина.

Таурин — аминокислота, оказывающая благоприятное влияние на сердечно-сосудистую систему. Таурин стабилизирует возбудимость мембран, что очень важно для контроля эпилептических припадков. Эта аминокислота наряду с серой считается факторами, необходимыми при контроле множества биохимических изменений, имеющих место в процессе старения. Большую роль таурин играет в энергообмене в организме. По последним научным данным, он улучшает липидный обмен, сохраняет электролитный состав цитоплазмы, нормализует функционирование мембран клеток, защищая их. На практике это дает значительный прирост энергии на тренировках, снижает утомляемость, повышает интенсивность занятий. Так же, таурин участвует в освобождении организма от засорения свободными радикалами, понижает кровяное давление и уровень холестерина.
Таурин содержат: рыбные и молочные белки. В организме самостоятельно вырабатывается из цистеина с помощью витамина В6.

Условно-незаменимые аминокислоты


Тирозин — аминокислота, которая может бороться с усталостью и стрессом, снизить тревожность и повысить общий тонус и настроение. Как аминокислота тирозин обладает умеренным антиоксидантным действием, связывает свободные радикалы (нестабильные молекулы), которые способны нанести вред клеткам и тканям. Тирозин так же важен для процессов метаболизма.
Тирозин содержат: молочные и мясные продукты, рыба. Самостоятельно организм производит тирозин из фенилаланина.

Цистеин — аминокислота, которая служит исходным материалом (наряду с селеном) для получения фермента глутатион пероксидазы, а с помощью этого фермента организм очищается от химических токсинов. Так же, цистеин стимулирует активность белых кровяных тел.
Цистеин содержат: рыба, мясо, соевые продукты, пшеница, овёс.

body-bar.ru

для чего нужны? Аминокислоты в продуктах. Реакции и свойства аминокислот

В природе существуют две группы веществ: органические и неорганические. К последним относятся такие соединения, как углеводороды, алкины, алкены, спирты, липиды, нуклеиновые и другие кислоты, белки, углеводы, аминокислоты. Для чего нужны эти вещества, мы и расскажем в этой статье. В состав всех органических соединений непременно входят атомы карбона и гидрогена. Также они могут содержать и оксиген, сульфур, нитроген и другие элементы. Наука, изучающая белки, кислоты, оксиды, аминокислоты, — химия. Она исследует свойства и особенности каждой группы веществ.

Аминокислоты — для чего нужны эти вещества?

Они очень важны для организма любого живого существа на планете, так как являются составляющей самых значимых веществ — белков. Всего существует двадцать одна аминокислота, из которых образуются данные соединения. В состав каждой входят атомы гидрогена, нитрогена, карбона и оксигена. Химическая структура данных веществ имеет аминогруппу Nh3, от которой и происходит название.

Как из аминокислот складываются белки?

Данные органические вещества формируются в четыре этапа, их строение состоит из первичной, вторичной, третичной и четвертичной структур. От каждой из них зависят определенные свойства белка. Первичная определяет количество и порядок размещения аминокислот, находящихся в полипептидной цепи. Вторичная представляет собой альфа-спираль либо бета-структуры. Первые образуются вследствие закручивания полипептидной цепи и возникновения водородных связей в пределах одной.

Вторые — по причине возникновения связей между группами атомов разных полипептидных цепей. Третичная структура — это соединенные между собой альфа-спирали и бета-структуры. Она может быть двух видов: фибриллярная и глобулярная. Первая представляет собой длинную нить. Белками с такой структурой являются фибрин, миозин, находящиеся в мышечных тканях, а также другие. Вторая имеет вид клубка, к глобулярным белкам относятся, к примеру, инсулин, гемоглобин и многие другие. В организме живых существ за синтез белков из аминокислот отвечают специальные органеллы клетки - рибосомы. Информация о белках, которые должны быть выработаны, зашифрована в ДНК и переносится к рибосомам с помощью РНК.

Какие бывают аминокислоты?

Соединений, из которых образуются белки, всего в природе двадцать одно. Некоторые из них человеческий организм способен синтезировать в ходе метаболизма (обмена веществ), а другие — нет. Вообще, в природе существуют такие аминокислоты: гистидин, валин, лизин, изолейцин, лейцин, треонин, метионин, фенилаланин, триптофан, цистеин, тирозин, аргинин, аланин, глутамин, аспарагин, глицин, пролин, карнитин, орнитин, таурин, серин. Первые девять из перечисленных выше аминокислот являются незаменимыми. Также существуют условнонезаменимые — те, которые организм может использовать вместо незаменимых в крайних случаях. Это, к примеру, тирозин и цистеин. Первая может быть использована вместо фенилаланина, а вторая — если нет метионина. Незаменимые аминокислоты в продуктах — обязательное условие здорового питания.

В какой еде они содержатся?

  • Валин — мясо, рыба.
  • Гистидин — гречневая каша, злаки, красная рыба, свинина, птица.
  • Изолейцин — яйца, мясо, рыба, молоко, сыр, творог.
  • Лейцин — те же, что и изолейцин.
  • Метионин — злаки, арахис, грецкие орехи, фисташки, зерновые.
  • Треонин — мясо, крупы, грибы.
  • Триптофан — индейка, кролик, свинина, ставрида.
  • Фенилаланин — мясо, фасоль, горох, чечевица, соя, рыба, творог, молоко, сыр.

Все остальные аминокислоты в продуктах, потребляемых человеком, могут и не содержаться, так как организм способен вырабатывать их самостоятельно, однако все-таки желательно, чтобы какая-то их часть поступала и с пищей. Большинство заменимых аминокислот содержатся в тех же продуктах, что и незаменимые, то есть мясе, рыбе, молоке — той еде, которая богата белком.

Роль каждой аминокислоты в организме человека

Каждое из этих веществ выполняет в организме определенную функцию. Самыми необходимыми для полноценной жизнедеятельности аминокислотами являются незаменимые, поэтому очень важно употреблять продукты с их содержанием в достаточном количестве.

Так как главным строительным материалом для нашего организма является белок, то можно сказать, что самыми важными и нужными веществами являются аминокислоты. Для чего нужны незаменимые, мы сейчас вам расскажем. Как уже было написано выше, к этой группе аминокислот относятся гистидин, валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан. Каждое из этих химических соединений играет свою специфическую роль в организме. Так, валин необходим для полноценного роста, поэтому продукты с высоким его содержанием обязательно должны содержаться в достаточном количестве в рационе детей, подростков и спортсменов, которым нужно увеличить концентрацию мышечной массы. Гистидин также выполняет немаловажную роль — участвует в процессе регенерации тканей, входит в состав гемоглобина (вот почему при низком его содержании в крови рекомендуют увеличить количество употребляемой гречневой каши). Лейцин нужен организму для того, чтобы синтезировать белки, а также чтобы поддерживать активность иммунной системы на должном уровне. Лизин — без данного вещества в организме просто не будет усваиваться кальций, поэтому нельзя допускать нехватки этой аминокислоты — нужно включить в свой рацион больше рыбы, сыра и других молокопродуктов. Триптофан нужен для выработки витамина В, а также гормонов, которые регулируют чувство голода и настроение. Это вещество входит в состав препаратов, способствующих успокоению и устранению бессонницы. Фенилаланин используется организмом для выработки таких гормонов, как тирозин и адреналин. Данное вещество также может входить в состав медицинских препаратов, которые назначаются при бессоннице либо депрессии.

Аминокислоты с точки зрения химии

Вы уже знаете, что составляющие белков и жизненно необходимые для человека вещества — это аминокислоты. Для чего нужны данные соединения, мы уже рассмотрели, теперь перейдем к их химическим свойствам.

Химические свойства аминокислот

У каждой из них они немного индивидуальны, хотя и имеют общие черты. Так как состав аминокислот может быть разным и включать в себя различные химические элементы, то и свойства будут слегка отличаться. Общим для всех веществ данной группы признаком является способность к конденсации с образованием пептидов. Также аминокислоты могут реагировать с азотистой кислотой, образуя при этом гидроксикислоты, воду и азот.

Кроме того, они вступают во взаимодействие и со спиртами. При этом образуется хлороводородная соль какого-либо эфира и вода. Для такой реакции необходимо присутствие в качестве катализатора соляной кислоты в газообразном агрегатном состоянии.

Как выявить их наличие?

Для определения присутствия данных веществ существуют специальные качественные реакции аминокислот. К примеру, чтобы обнаружить цистеин, нужно добавить ацетат свинца, а также использовать нагревание и щелочную среду. При этом должен образоваться сульфид свинца, который выпадает в осадок черного цвета. Также количество аминокислоты в растворе можно определить, добавив к нему азотистую кислоту. Узнают это по объему выделившегося азота.

fb.ru

Свойства и функции аминокислот

Аминокислоты - главный строительный материал любого живого организма. По своей природе они являются первичными азотистыми веществами растений, которые синтезируются из почвы. Строение и функции белков и аминокислот зависят от их состава.

Структура аминокислоты

Каждая ее молекула имеет карбоксильные и аминные группы, которые соединены с радикалом. Если аминокислота содержит 1 карбоксильную и 1 амино-группу, строение ее можно обозначить формулой, представленной ниже.

Аминокислоты, которые имеют 1 кислотную и 1 щелочную группу, называют моноаминомонокарбоновыми. В организмах также синтезируются аминокислоты, строение и функции которых обусловливают 2 карбоксильных группы или 2 аминных группы. Аминокислоты, содержащие 2 карбоксильные и 1 аминную группы, называют моноаминодикарбоновыми, а имеющие 2 аминные и 1 карбоксильную - диаминомонокарбоновыми.

Также они различны по строению органического радикала R. У каждой из них имеется свое наименование и структура. Отсюда и различные функции аминокислот. Именно наличие кислотной и щелочной групп обеспечивает ее высокую реактивность. Эти группы соединяют аминокислоты и образуют полимер – белок. Белки еще именуются полипептидами из-за своего строения.

Аминокислоты как строительный материал

Молекула белка - это цепочка из десятков или сотен аминокислот. Белки отличаются по составу, количеству и порядку расположения аминокислот, ведь число сочетаний из 20 составляющих практически бесконечно. Одни из них имеют весь состав незаменимых аминокислот, иные обходятся без одной или нескольких. Отдельные аминокислоты, структура, функции которых подобны белкам человеческого тела, не применяются в качестве пищевых, так как малорастворимы и не расщепляются ЖКТ. К таким принадлежат белки ногтей, волос, шерсти или перьев.

Функции аминокислот трудно переоценить. Эти вещества выступают главной пищей в рационе людей. Какую функцию выполняют аминокислоты? Они увеличивают рост мышечной массы, помогают укреплению суставов и связок, восстанавливают поврежденные ткани организма и участвуют во всех процессах, происходящих в теле человека.

Незаменимые аминокислоты

Только из добавок или пищевых продуктов можно получить незаменимые аминокислоты. Функции в процессе формирования здоровых суставов, крепких мышц, красивых волос очень значимы. К таким аминокислотам относятся:

  • фенилаланин;
  • лизин;
  • треонин;
  • метионин;
  • валин;
  • лейцин;
  • триптофан;
  • гистидин;
  • изолейцин.

Функции аминокислот незаменимых

Эти кирпичики выполняют важнейшие функции в работе каждой клетки человеческого организма. Они незаметны, пока поступают в организм в достаточном количестве, но их недостаток существенно ухудшает работу всего организма.

  1. Валин возобновляет мышцы, служит отличным источником энергии.
  2. Гистидин улучшает состав крови, способствует восстановлению и росту мышц, улучшает работу суставов.
  3. Изолейцин помогает выработке гемоглобина. Контролирует количество сахара в крови, повышает энергичность человека, выносливость.
  4. Лейцин укрепляет иммунитет, следит за уровнем сахара и лейкоцитов в крови. Если уровень лейкоцитов завышен: он их понижает и подключает резервы организма для ликвидации воспаления.
  5. Лизин помогает усвоению кальция, что формирует и укрепляет кости. Помогает выработке коллагена, улучшает структуру волос. Для мужчин это отличный анаболик, так как он наращивает мышцы и увеличивает мужскую силу.
  6. Метионин нормализует работу пищеварительной системы и печени. Участвует в расщеплении жиров, убирает токсикоз у беременных, благотворно влияет на волосы.
  7. Треонин улучшает работу ЖКТ. Повышает иммунитет, участвует в создании эластина и коллагена. Треонин препятствует отложению жира в печени.
  8. Триптофан отвечает за эмоции человека. Вырабатывает серотонин - гормон счастья, тем самым нормализует сон, поднимает настроение. Укрощает аппетит, благотворительно влияет на сердечную мышцу и артерии.
  9. Фенилаланин служит передатчиком сигналов от нервных клеток в мозг головы. Улучшает настроение, подавляет нездоровый аппетит, улучшает память, повышает восприимчивость, снижает боль.

Дефицит незаменимых аминокислот приводит к остановке роста, нарушению обмена веществ, снижению мышечной массы.

Заменимые аминокислоты

Это такие аминокислоты, строение и функции которых вырабатываются в организме:

  • аргинин;
  • аланин;
  • аспарагин;
  • глицин;
  • пролин;
  • таурин;
  • тирозин;
  • глутамат;
  • серин;
  • глутамин;
  • орнитин;
  • цистеин;
  • карнитин.

Функции аминокислот заменимых

  1. Цистеин ликвидирует токсические вещества, участвует в создании тканей кожи и мышц, представляет собой естественный антиоксидант.
  2. Тирозин снижает физическую усталость, ускоряет метаболизм, ликвидирует стресс и депрессию.
  3. Аланин служит для роста мускулатуры, является источником энергии.
  4. Аспарагиновая кислота увеличивает метаболизм и снижает образование аммиака при больших нагрузках.
  5. Цистин устраняет боль при травмировании связок и суставов.
  6. Глутаминовая кислота отвечает за мозговую активность, во время длительных физических нагрузок переходит в глюкозу, вырабатывая энергию.
  7. Глутамин восстанавливает мышцы, повышает иммунитет, ускоряет метаболизм, усиливает работу мозга и создает гормон роста.
  8. Глицин необходим для работы мышц, расщепления жира, стабилизации артериального давления и сахара в крови.
  9. Карнитин перемещает жировые кислоты в клетки, где совершается их расщепление с выделением энергии, в результате чего сжигается лишний жир и генерируется энергия.
  10. Орнитин производит гормон роста, участвует в процессе мочеобразования, расщепляет жирные кислоты, помогает выработке инсулина.
  11. Пролин обеспечивает производство коллагена, он необходим для связок и суставов.
  12. Серин повышает иммунитет и вырабатывает энергию, нужен для быстрого метаболизма жирных кислот и роста мышц.
  13. Таурин расщепляет жир, поднимает сопротивляемость организма, синтезирует желчные соли.

Белок и его свойства

Белки, или протеины – высокомолекулярные соединения с содержанием азота. Понятие "протеин", впервые обозначенное Берцелиусом в 1838 г., происходит от греческого слова и означает "первичный", что отображает лидирующее значение протеинов в природе. Разновидность белков дает возможность для существования огромного количества живых существ: от бактерий до человеческого организма. Их существенно больше, чем других макромолекул, ведь белки – это фундамент живой клетки. Составляют приблизительно 20% от массы человеческого тела, больше 50% сухой массы клетки. Такое количество разнообразных белков объясняется свойствами двадцати различных аминокислот, которые взаимодействуют друг с другом и создают полимерные молекулы.

Выдающееся свойство белков - способность к самостоятельному созданию определенной, свойственной конкретному белку пространственной структуры. По химическому строению белки – это биополимеры с пептидными связями. Для химического состава белков свойственно постоянное среднее содержание азота – приблизительно 16%.

Жизнь, а также рост и развитие организма невозможны без функции белковых аминокислот строить новые клетки. Белки нельзя заменить прочими элементами, их роль в человеческом организме является чрезвычайно важной.

Функции белков

Необходимость белков заключается в таких функциях:

  • он необходим для роста и развития, так как выступает главным строительным материалом для создания новых клеток;
  • управляет метаболизмом, во время которого освобождается энергия. После принятия пищи скорость метаболизма увеличивается, например, если еда состоит из углеводов, метаболизм ускоряется на 4%, если из белков – на 30%;
  • регулируют водный баланс в организме, благодаря своей гидрофильности – способности притягивать воду;
  • усиливают работу иммунной системы, синтезируя антитела, которые защищают от инфекции и ликвидируют угрозу заболевания.

Продукты - источники белков

Мышцы и скелет человека состоят из живых тканей, которые на протяжении жизни не только функционируют, но и обновляются. Восстанавливаются после повреждений, сохраняют свою силу и прочность. Для этого им требуются вполне определенные питательные вещества. Пища обеспечивает организм энергией, необходимой для всех процессов, включая работу мышц, рост и восстановление тканей. А белок в организме используется и как источник энергии, и как стройматериал.

Поэтому очень важно соблюдать его ежедневное использование в пищу. Богатые белком продукты: курица, индейка, постная ветчина, свинина, говядина, рыба, креветки, фасоль, чечевица, бекон, яйца, орех. Все эти продукты обеспечивают организм белком и дают энергию, необходимую для жизни.

fb.ru

Аминокислоты - это... Что такое Аминокислоты?

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 10 апреля 2012.

Аминокисло́ты (аминокарбо́новые кисло́ты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.

История

Открытие аминокислот в составе белков

Физические свойства

Аминокислоты — бесцветные кристаллические вещества, хорошо растворимые в воде. Многие из них обладают сладким вкусом.

Общие химические свойства

Все аминокислоты амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы  —COOH, так и основные свойства, обусловленные аминогруппой  —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl HCl • NH2 —CH2 —COOH (хлороводородная соль глицина)
NH2 —CH2 —COOH + NaOH H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей.

NH2 —CH2COOH N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Получение

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

CH3COOH + Cl2 + (катализатор) CH2ClCOOH + HCl; CH2ClCOOH + 2NH3 NH2 —CH2COOH + NH4Cl

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметричный атом углерода (треонин и изолейцин содержат два асимметричных атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-форму, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах.

Данную особенность «живых» аминокислот весьма трудно объяснить, так как в реакциях между оптически неактивными веществами L и D-формы образуются в одинаковых количествах. Возможно, выбор одной из форм (L или D) — просто результат случайного стечения обстоятельств: первые молекулы, с которых смог начаться матричный синтез, обладали определенной формой, и именно к ним «приспособились» соответствующие ферменты.

D-аминокислоты в живых организмах

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: так в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью ~0,1 % в год[2], что может быть использовано для определения возраста млекопитающих. Рацемизация остатков аспарагиновой также отмечена при старении коллагена, предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счет образования сукцинимидного кольца при внутремолекулярном ацилировании пептидного азота свободной карбоксильной группой аспарагиновой кислоты[3].

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов. Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих.

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин.

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путем нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

Протеиногенные аминокислоты

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O). Это так называемые 21-я и 22-я аминокислоты.

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся не решённым. Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Структурные формулы 20-ти протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Для запоминания однобуквенного обозначения протеиногенных аминокислот используется мнемоническое правило (последний столбец).

Классификация

По радикалу
  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин, метионин, фенилаланин, триптофан
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, аспарагин, глутамин, тирозин
  • Полярные заряженные отрицательно при pH<7: аспартат, глутамат
  • Полярные заряженные положительно при pH>7: лизин, аргинин, гистидин
По функциональным группам
  • Алифатические
    • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
    • Оксимоноаминокарбоновые: серин, треонин
    • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
    • Амиды моноаминодикарбоновых: аспарагин, глутамин
    • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
    • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан, (гистидин)
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин
По классам аминоацил-тРНК-синтетаз
  • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
  • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза

Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:

  • Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.
  • Семейство глутамата: глутамат, глутамин, аргинин, пролин.
  • Семейство пирувата: аланин, валин, лейцин.
  • Семейство серина: серин, цистеин, глицин.
  • Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.

Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

По способности организма синтезировать из предшественников
  • Незаменимые
    Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан, аргинин, гистидин.
  • Заменимые
    Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

По характеру катаболизма у животных

Биодеградация аминокислот может идти разными путями. По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы: глюкогенные (при распаде дают метаболиты, не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: пируват, α-кетоглутарат, сукцинил-KoA, фумарат, оксалоацетат), кетогенные (распадаются до ацетил-KoA и ацетоацетил-KoA, повышающие уровень кетоновых тел в крови животных и человека и преобразующиеся в первую очередь в липиды), глюко-кетогенные (при распаде образуются метаболиты обоих типов).

  • Глюкогенные: глицин, аланин, валин, пролин, серин, треонин, цистеин, метионин, аспартат, аспарагин, глутамат, глутамин, аргинин, гистидин.
  • Кетогенные: лейцин, лизин.
  • Глюко-кетогенные (смешанные): изолейцин, фенилаланин, тирозин, триптофан.

«Миллеровские» аминокислоты

«Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

Родственные соединения

В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

Применение

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта.

Аминокислоты входят в состав спортивного питания и комбикорма. Аминокислоты применяются в пищевой промышленности в качестве вкусовых добавок, например, натриевая соль глутаминовой кислоты[4].

Примечания

См. также

Ссылки

Miller S. L. Production of amino acids under possible primitive earth conditions. Science, v. 117, May 15, 1953
Miller S. L. and H. C. Urey. Organic compound synthesis on the primitive earth. Science, v. 130, July 31, 1959
Miller Stanley L. and Leslie E. Orgel. The origins of life on the earth. Englewood Cliffs, NJ, Prentice-Hall, 1974.

  • Общая биология. Учебник для 9 — 10 классов средней школы. Под ред. Ю. И. Полянского. Изд. 17-е, перераб. — М.: Просвещение, 1987. — 288с. [1]
Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

dal.academic.ru


Смотрите также

Календарь мероприятий

Уважаемые родители и ребята, ждем вас на занятия со 2го сентября по расписанию. Расписание занятий Понедельник Среда Пятница Дети с 8-13 лет 16.50 - 18.15 16.50 - 18.15 16.50 -...
Итоги турнира: 1е место - Кравченков Сергей (Алтай), 2е место - Спешков Станислав(СПБ), 3е место - Набугорнов Николай (Алтай). Победители были награждены...

Новости

Поздравляем наших участников соревнования по кикбоксингу "Открытый кубок ГБОУ ДОД ДЮСШ Выборжанин"! Юрий Кривец и Давид Горнасталев - 1 место,...