Двигательная функция белков это


Сайт учителей биологии МБОУ Лицей № 2 города Воронежа

Основные свойства и функции белков

Аминогруппа позволяет аминокислотам выступать в роли оснований и реагировать с кислотами.

Благодаря этому аминокислоты и белки служат буферами, т. е. противодействуют изменениям кислотности и щёлочности, защищая протоплазму клетки.

Для белковой молекулы характерны ещё два свойства: денатурация и ренатурация.

Денатурация — это утрата белковой молекулой своей структурной организации. Она может быть вызвана изменением температуры, обезвоживанием, изменением кислотности раствора и другими воздействиями. Сначала разрушается четвертичная структура (самая слабая), затем третичная, вторичная и при наиболее жёстких условиях первичная.

Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздаётся структура белка. Такой процесс носит название ренатурации.

Явление денатурации белка знакомо всем: каждый наблюдал, как прозрачное жидкое содержимое яйца после нагревания становится плотным и непрозрачным.

Свойство ренатурации широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например антибиотиков, для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

Функции белков в клетке

Функция Пояснение
Каталитическая Самый многообразный и наиболее специализированный класс белков — это ферменты. Они отвечают за работу точно и гибко согласованной системы взаимозависимых химических реакций, в результате совместного протекания которых возможна жизнь
Структурная Белки участвуют в формировании клеточных и внеклеточных структур, например, входят в состав клеточных мембран (липопротеиды и гликопротеиды), волос (кератин), сухожилий (коллаген) и др.
Двигательная Сократительные белки — актин и миозин — обеспечивают сокращение мышц у многоклеточных животных
Транспортная В клеточных мембранах присутствуют особые транспортные белки, способные связывать некоторые вещества, например, глюкозу, аминокислоты и переносить их внутрь клеток. Гемоглобин транспортирует кислород и частично углекислый газ
Регуляторная Некоторые гормоны имеют белковую природу. Например, инсулин, регулирующий уровень глюкозы в крови
Защитная Иммуноглобулины (или антитела) обладают способностью распознавать проникшие в организм чужеродные белки или микроогранизмы и обезвреживать их. Фибриноген и протромбин участвуют в процессе свертывания крови и предохрняют организм от кровопотерь. Токсины также можно отнести к белкам, выполняющим защитную функцию
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж энергии.
Запасающая Альбумин яиц и казеин молока — резервные белки животных
Сигнальная В мембраны клеток встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды и передавать, таким образом, сигналы в клетку 

 

Белки-ферменты

Ферменты (лат. fermentum — закваска) — специфические белковые катализаторы, присутствующие во всех живых клетках. Почти все биохимические реакции, протекающие в любом организме, катализируются соответствующими ферментами.

Вещество, на которое оказывает действие фермент, называется субстратом. Вещества, получающиеся в результате ферментативной реакции, называются продуктами реакции.

Направляя и регулируя обмен веществ, ферменты играют важнейшую роль во всех процессах жизнедеятельности.

Классификация ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя к названию субстрата суффикс -аза (например, лактаза — фермент, участвующий в превращении лактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например по оптимальному pH (щелочная фосфатаза) или локализации в клетке (мембранная АТФ-аза).

По типу катализируемых реакций ферменты подразделяются на 6 классов:

  1. Оксидоредуктазы катализируют окисление или восстановление (например, каталаза, алкогольдегидрогеназа).
  2. Трансферазы катализируют перенос химических групп с одной молекулы субстрата на другую (например, киназы, переносящие фосфатную группу с молекулы АТФ).
  3. Гидролазы катализируют гидролиз химических связей (к этому классу относится большинство пищеварительных ферментов, например, пепсин, трипсин, амилаза, липаза).
  4. Лиазы катализируют разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  5. Изомеразы катализируют структурные или геометрические изменения в молекуле субстрата.
  6. Лигазы катализируют образование химических связей между субстратами за счет гидролиза АТФ (например, ДНК-полимераза).

Строение и механизм действия ферментов

По химической природе ферменты — это глобулярные белки, состоящие либо только из аминокислот, либо в их состав входит небелковый компонент, называемый кофактором.

Кофакторы могут быть как неорганическими молекулами (например, ионы металлов), так и органическими (например, гем гемоглобина). Кофакторы органической природы, способные отделяться от фермента, называют еще коферментами. Роль коферментов часто играют витамины.

В молекуле фермента выделяют особую часть — активный центр. Это небольшой участок молекулы (от 3 до 12 аминокислотных остатков), где происходит связывание субстрата (или субстратов) и образуется фермент-субстратный комплекс.

Свойства реакций ферментативного катализа

1. Строгая специфичность. Ферменты проявляют строгую специфичность, то есть один фермент катализирует только одну реакцию.

2. Высокая скорость. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз выше скорости реакций, идущих с участием неорганических катализаторов.

Факторы, влияющие на скорость ферментативных реакций

Скорость ферментативных реакций зависит от ряда факторов.

1. Температура. Большинство ферментов может работать при температуре от 0оС до 40оС. При более низкой температуре ферменты неактивны, при более высокой подвергаются денатурации. Поскольку белки в сухом состоянии денатурируют значительно медленнее, чем белки в растворенном виде, инактивирование ферментов в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до более высоких температур, чем те же споры или семена в увлажненном состоянии.

2. Концентрация субстрата. При высокой концентрации субстрата и при постоянстве других факторов скорость ферментативной реакции пропорциональна концентрации фермента. Скорость реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При этом происходит насыщение всех активных центров молекул фермента.

3. Концентрация фермента. Катализ осуществляется всегда в условиях, когда концентрация фермента гораздо ниже концентрации субстрата. Поэтому с возрастанием концентрации фермента растет и скорость ферментативной реакции.

4. рН. Для каждого фермента существует оптимальное значение рН, при котором проявляется максимальная каталитическая активность (например, для пепсина оптимум рН=2,0, а для липазы поджелудочной железы рН=9,0).

5. Активаторы и ингибиторы. Скорость работы некоторых ферментов регулируется особыми веществами — активаторами (ускоряют реакцию) и ингибиторами (замедляют реакцию). Эти вещества способны присоединяться к молекулам фермента и либо облегчать связывание активного центра молекулы фермента с субстратом, либо делать невозможным образование фермент-субстратного комплекса. 

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность. Существует два типа модификации: присоединение химических групп к боковым остаткам полипептидной цепи и расщепление полипептидной цепи.

< Предыдущая страница "Органические вещества клетки. Белки"

Следующая страница "Органические вещества клетки. Нуклеиновые кислоты" >

biolicey2vrn.ru

Биологические функции белков. Белки как ферменты

Какова общая роль ферментов? Направление, регуляция обмена веществ путем ускорения химических реакций. В целом известно, что ферменты являются катализаторами, ускорителями реакций. Все ферменты — белки, но не все белки ферменты! Роль ферментов могут выполнять и РНК. Впервые ферменты (уреазу, расщепляющую мочевину) в кристаллической форме выделил американский химик Джеймс Самнер в 1926 году. «Аза» — окончание многих белков.

Образование или распадение каких-либо химических связей под действием фермента предваряет создание фермент-субстратного комплекса. Пример субстрата — белки пищи человека. Пример фермента — белок пепсин. При соединении субстрата с ферментом как раз и образуется фермент-субстратный комплекс (белки пищи с белком пепсином). Далее субстрат превращается в продукт (аминокислоты, до которых расщепились белки пищи), поэтому в результате реакции остаются фермент и продукт.

Строение фермента

1.      Субстратный центр обеспечивает удержание субстрата.

2.      В активном центре идет реакция видоизменения субстрата.

3.      Регуляторный центр поддерживает специфическую конфигурацию фермента. Конфигурация фермента связана с третичной и четвертичной структурой белка. Регуляторный центр может изменять конфигурацию белка для быстрого соединения с субстратом.

Состав ферментов

1.      Однокомпонентные ферменты состоят только из белков.

2.      Двухкомпонентные ферменты имеют белковую часть (апофермент), а также небелковые включения (кофермент).

3.      Коферменты — это витамины, ионы металлов. По сути, витамины активируют ферменты.

Свойства ферментов

1.      Специфичность, избирательность действия. Например, липаза расщепляет жиры, амилаза — крахмал, трасферазы осуществляют перенос химических групп с одной молекулы на другую, оксидоредуктазы — перенос электронов при окислении одних веществ и восстановлении других.

2.      Фермент не расходуется, каждая молекула может осуществлять до нескольких миллионов операций в минуту.

3.      Каталитическая активность ферментов в несколько раз выше, чем у неорганических катализаторов.

4.      Ферменты активны при определенных условиях среды.

Как кислотность влияет на ферменты?

1.      Повышение концентрации ионов водорода (как и температуры) сначала усиливает активность ферментов, затем понижает ее.

2.      Действительно, при достижении высокого порога рН не многие ферменты могут работать.

3.      При повышении водородного показателя до 1-2 редкие ферменты могут функционировать, например, таким ферментом является пепсин желудка.

От чего зависит скорость ферментативных реакций?

1.      От температуры среды (большинство ферментов человека активны в интервале от 30 до 40 градусов, при 0 активность замирает).

2.      От концентрации солей.

3.      От уровня реакции среды — рН. Так, пепсин действует исключительно в кислой желудочной среде (при 1-2 рН), трипсин при 8-9 рН. Ферменты в целом предпочитают слабощелочную среду.

4.      От концентрации субстрата.

5.      От концентрации фермента.

Активаторы и ингибиторы ферментов

1.      Активаторами выступают различные неорганические вещества, например, ионы металлов.

2.      Ингибиторы образуют с ферментом комплекс, лишенный ферментативной активности. Выделяют конкурентное ингибирование — в этом случае ингибитор не дает соединиться субстрату с ферментом. При неконкурентном ингибировании ингибитор просто нарушает конфигурацию фермента, в связи с чем фермент не способен соединиться с субстратом. Пример — синильная кислота, нейтрализующая дыхательный фермент цитохромоксидазу.

Что влияет на каталитическую активность ферментов?

Денатурация фермента. Если изменяется структура белка при денатурации, подавляется активность фермента. При этом нарушается пространственная конфигурация активного центра.

Белки — регуляторы биохимических процессов

1.      Многие гормоны — белки. Примеры — соматотропин (синтезируется с помощью генной инженерии), тиреотропный гормон, либерины и статины гипоталамуса, инсулин, глюкагон. Инсулин открывает клетку для глюкозы, его также научились получать с помощью генной инженерии.

2.      Однако не все гормоны — белки. Три- и тетрайодтиронин, адреналин, мелатонин являются производными аминокислот.

Как гормоны влияют на организм?

Они изменяют активность определенных ферментов. Каким образом это происходит? Например, присоединение к ферментам фосфатных групп. Это повышает или понижает активность ферментов. Понятно, что присоединение дополнительных химических группировок может изменить свойства ферментов.

Другие гормоны усиливают синтез ферментов в клетках. Например, существует группа белковых факторов роста, которые активируют ферменты синтеза ДНК перед делением клетки. В связи с этим клетка быстрее делится, растет, что особенно важно при ранениях, операциях. Однако при избытке таких гормонов может произойти злокачественный рост. Причины его — изменения в структуре генов, ответственных за факторы роста. Мы можем сделать вывод, что один белки (гормоны) влияют на другие белки (ферменты).

Двигательная функция белков

Сократительные белки отвечают за следующие действия — биение жгутиков простейших, мерцание ресничек, движения мышц у животных, листьев у растений. Примеры таких белков — актин, миозин.

Белки — переносчики (транспортные белки)

1.      Находятся в плазме крови, в мембранах, цитоплазме, в ядре.

2.      Они связывают гормоны и несут их к клеткам-мишеням, где эти гормоны узнаются специальными рецепторами. Например, белки мембран избирательно транспортируют сахара, аминокислоты, ионы. Гемоглобин транспортирует кислород и углекислый газ, трансферрин — ионы железа.

Белки — средства защиты организма

1.      Лимфоциты вырабатывают белки — иммуноглобулины (антитела) в ответ на антигены — чужеродные белки, полисахариды, полинуклеотиды и их комплексы в жидкой среде, в составе вирусов, бактерий.

2.      Интерфероны — противовирусные белки, способные активировать ферменты, которые расщепляют нуклеиновые кислоты вирусов. Они также выделяются лейкоцитами. Интерфероны запускают синтез фермента, блокирующего аппарат синтеза вирусных белков.

3.      Растения выделяют ферменты, ускоряющие синтез защитных соединений — флавоноидов, терпенов, алкалоидов. Некоторые ферменты растений разрушают покровы патогенных организмов, делают прочными покровы самих растений.

Строительная и энергетическая функция белков

Белки участвуют в образовании органелл. Из 1 грамма белков вырабатывается 17 кДж энергии, но только если углеводы и жиры закончились.

egevideo.ru

Все функции белков с примерами. Сигнальная функция

Сигнальная функция белков - способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и апоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служить фактор некроза опухоли, который передаёт сигналы воспаления между клетками организма .

Транспортная функция

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (аффинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назватьгемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов .

Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану. Многие ионные каналыспециализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них . Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. «Электростанция клетки» - АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам .

Запасная (резервная) функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S) и яйцеклетках животных . Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Так же как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки - необходимые компоненты всех живых организмов, они участвуют в большинстве жизненных процессов клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур - органелл, секретируются во внеклеточное пространство для обмена сигналами между клетками, гидролиза пищи и образования межклеточного вещества.

Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза - фермент из класса аминоацил-тРНК синтетаз, который не только присоединяет лизин к тРНК, но и регулируеттранскрипцию нескольких генов . Многие функции белки выполняют благодаря своей ферментативной активности. Так, ферментами являются двигательный белок миозин, регуляторные белки протеинкиназы, транспортный белок натрий-калиевая аденозинтрифосфатаза и др.

Каталитическая функция

Наиболее хорошо известная роль белков в организме - катализ различных химических реакций. Ферменты - группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие как, например, пепсин расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками . Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой, протекает в 10 17 раз быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента) . Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодейств

trining.ru

Ответы Mail.ru: Вопросы по биологии!

1Двигательная функция – сократительные белки вызывают всякое движение. например двигательные белки-актин, миозин входят в структуру мышечной ткани 2Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Жиры также входят в структуру клеточной стенки-билипидный слой 3Белки – регуляторы физиологических процессов. регуляторы физиологических процессов-гормоны, а многие гормоны-белки. К ним, например, относятся все гормоны, производимые в особых клетках мозга, находящихся в гипоталамической части его и в гипофизе. Это гормон роста, адренокортикотропный гормон (АКТГ) , тиреотропный гормон (ТТГ) и другие гормоны гипофиза, а также либерины и статины гипоталамуса, усиливающие или подавляющие синтез и выход в кровь гормонов гипофиза. 4плавучесть белков необходима для транспорта веществ в организме. Имея различные функциональные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.

Двигательная функция: способны сокращаться и обеспечивать движение клетки и ее структур. 3) Пример. Белки - гормоны. Регулируют скорость реакции обмена веществ в клетке

<a rel="nofollow" href="http://works.tarefer.ru/10/100069/index.html" target="_blank">http://works.tarefer.ru/10/100069/index.html</a> незнаю но почитайте надеюсь то что надо!

1.белки мышц актин и миозин осуществляют движение, белки, входящие в состав жгутиков и ресничек 2.и белки, и жиры входят в состав биологической мембраны 3.регуляторные белки- это белки-гормоны, например, инсулин контролирует проникновение глюкозы из крови в клетки

1.С белками связана двигательная активность на любом уровне организма, так как белки — основа двигательных структур. Белки актин и миозин называют двигательными белками. Белки обеспечивают транспортные функции крови, в том числе и транспорт кислорода и углекислого газа (гемоглобин эритроцитов — белок) . Гемоглобин — основа самой мощной буферной системы крови. Гемоглобин и другие белки плазмы крови поддерживают РН (уровень кислотности) жидких сред организма на постоянном уровне. Белки удерживают воду в сосудистом русле. Белки крови определяют величину и направление процессов фильтрации в капиллярах. В организме нет депо белков. Но белки печени, мышц, альбуминовая фракция белков плазмы крови составляют белковый резерв организма. Например, чтобы поддержать структуры и обеспечить функцию нервной системы и сердца при длительном голодании, эти белки вовлекаются в процессы обмена. Белки обеспечивают восприятие сигналов, так как они образуют рецепторные структуры клеточных мембран.

touch.otvet.mail.ru

Функции белков в организме человека. Таблица с примерами для спортсмена, бодибилдера, питание

Для полноценного функционирования организма человеку необходимо ежедневно употреблять питательные вещества, в составе которых присутствуют белки, липиды и углеводы. Главным строительным материалом для тела и органов является белок. Его функции влияют на развитие, движения, рост и защитные способности человеческого организма.

Содержание статьи:

Белки – что это такое?

Белки – высокомолекулярные элементы органического характера. В их состав входят альфа-аминокислоты пептидно-связанны в последовательную цепочку. В организме особи вырабатываются не все аминокислоты необходимые для полноценной работы организма.

Недостающее количество поступает с белковыми продуктами. В процессе переваривания еды, белок распадается на аминокислотные элементы, участвующие в выделении организмом собственного белка или превращении в энергию.

Уровни организации

По уровням организации белки разделены на четыре структуры:

  • первичная;
  • вторичная;
  • третичная;
  • четвертичная.

Первичная структура белка

Первичная структура – элементарная аминокислотная цепь линейного вида, соединенная полипептидной связью. Особенностью данной структуры есть стабилизированное соединение остаточных частей аминокислоты, выполняющих специальные функции в составе белков.

Первичную структуру определяют по последовательном размещении аминокислотных или нуклеотидных сочетаний при помощи табличных данных генетического кода.

Вторичная структура белка

Вторичная структура – способ формирования упорядоченной цепи элементарных соединений с помощью группового взаимодействия аминокислотных веществ, связанных водородными соединениями. Существует 2 варианта вторичной структуры: спиралевидная (канат) и складчатая (гармошка). В белках находятся оба виды, но долевое соотношение разное.

Третичная структура белка

Третичная структура – составляющие вторичной структуры, которые связанные разными взаимодействующими процессами с изолирующей функцией от воды. Определить данную структуру можно через рентгеноструктурный анализ или микроскопию.

Четвертичная структура белка

Четвертичная структура – сочетание нескольких аминокислотных соединений в составе одного белка после полного окончания его переработки в организме. В формировании четвертичного и третичного уровня берут участие одинаковые типы взаимосвязей.

Функции белка в организме

Функции белков в организме человека заключены в его участии в метаболизме. Входя в состав клеток протеин выступает сигналом для запуска разложения пищи, взаимодействия с водой и творения между клеточного вещества.

Из-за широкого спектра воздействия на организм белки условно разделены по функциям.

Каталитическая функция белка

Каталитическую функцию обеспечивают специальные элементы – ферменты, которые влияют на качество и продолжительность химических реакций под воздействием некоторых элементарных соединений. Ферменты бывают простые и сложные.

Простые состоят из остаточных аминокислот, а сложные имеют элементы белка, взаимодействующие с органическими и неорганическими веществами.

Каталитическая функция белка отвечает за переработку и выделение веществ, попадающих в организм при подходящей температуре, давлению и кислотно-луженом балансе.

Структурная функция белка

Структурная функция – строительная. Заключается расположением белка в клетках, придавая им форму или изменяя их. Белки формируют соединительное вещество, которое входит в состав волос, ногтей и другое. К этой функции относят: кератин, коллаген, эластин.

Защитная функция белка

Защитная функция белка заключается в предотвращении повреждения организма внешними и внутренними посторонними соединениями.

Функции белков в организме человека бывают 3-х видов:

  • Физическая. Осуществляется механическая поддержка клеток, а также обеспечивается свертываемость крови и заживление ран.
  • Химическая. Белки способствуют очищению организма путем связывания токсинов и их выведению.
  • Иммунная. Белки уничтожают бактерии, вирусы и чужеродные белки, попавшие в организм.

Регуляторная функция белка

Регуляторная функция заключается в регулировании обменных циклов, контроле роста, развитии и плодотворности организма путем соединения с другими белками для их активации или подавления.

Сигнальная функция белка

Сигнальная функция – это способность белка проводить сигнальные импульсы между клетками для активации или отмены процессов жизнедеятельности организма. Сигнальная функция обеспечивает взаимодействие иммунной, эндокринной и нервной систем.

Транспортная функция белка

Транспортная функция – способность белковых связей переносить необходимые элементы от одного органа к другому при обменных процессах организма или дыхании, а также обеспечивает связь всех клеток с внешней средой.

Запасная (резервная) функция белка

Запасную функцию выполняют белки, которые резервируются как источник энергии и скапливают в клетках необходимые вещества для метаболизма: вода, железо, кислород и другие.

Рецепторная функция белка

Рецепторная функция активизируется под механическим (свет) или химическим воздействием на белковые рецепторы, которые находятся внутри клетки.

Заключается в принятии, задержании и передачи сигналов из внешней среды к органам для активизации или прекращении какого-либо процесса.

Моторная (двигательная) функция белка

Моторная функция обеспечивает все движение в человеческой массе специальными сократительными элементами. Такие процессы как сокращение мышц, перемещение клеток (лейкоцитов), смыкание ресниц и внутриклеточные циркуляции на прямую связанны с двигательными функциями.

Процесс движения происходит из-за способности белка химическую энергию (вещества в организме) превратить в механическую работу (сокращение, сгибание, сжимание и другие).

Какие существуют виды белков

Белки берут участие в жизнедеятельности организма человека, разделенные на виды по типу функций:

  • Структурные белки выступают строительными элементами для разных тканей организма, предавая им форму, мощность и эластичность.
  • Транспортные белки транспортируют питательные и полезные элементы по всему организму проникая в малодоступные места.
  • Рецепторные белки, находясь между оболочками клеток, связываются с питательными веществами и проводят их внутрь этих же клеток. Большую роль играют в процессе развития плода внутри матери, обеспечивая его всеми необходимыми компонентами.
  • Сократительные белки приводят в движение весь организм начиная от клеток и заканчивая всем телом в целом.
  • Регуляторные белки отвечают за полноценные обменные процессы в организме.

  • Защитные белки способствуют противостоянию организма и его защите от вирусов, микробов и инфекций.
  • Ферменты – это белки, которые отвечают за протекание всех реакций внутри клеток, стимулируют метаболизм.

Классификация по типу строения

По типу строения белки делятся на простые и сложные. Простые белки – протеины, в составе которых имеют место аминокислотные остатки (основные компоненты белка). Находятся в яйцах, молоке, бобах и растительных культурах.

Сложные белки – протеиды, имеющие в составе основной белковый компонент и небелковое образование (кислоты, жиры, углеводы), вовремя взаимодействии которых происходят жизненно важные циклы развития и укрепления человека.

Выделено несколько видов сложных белков в зависимости от состава:

  • Гликопротеиды – состоят из аминокислоты и углеводов.
  • Нуклеопротеиды – союз аминокислот и нуклеиновых кислот.
  • Липопротеиды – взаимодействие основного белкового компонента и жиров.
  • Фосфор протеиды – в составе содержатся аминокислота и фосфорная кислота.
  • Хромо протеиды – взаимодействие белкового вещества и металлосодержащих элементов.

Также белки разделены на животные – находятся в мясе животных, их крови и кожных и опорных тканях, и растительные – находятся в составе растительных культур.

Белки и азотный баланс

Белки и азотистый баланс напрямую связанны между собой. Азотистый баланс – это соотношение поступления азота в организм с пищей и выведение из него в процессе жизнедеятельности. Основной поставщик азота – белок. В процессе распада белковых продуктов в организм выделяется некое количество азота.

При нормальном взаимодействии всех органов и сбалансированного питания это количество азотного вещества выводится из организма полностью.

Процесс называется азотистое равновесие, во время которого с человеческим телом ничего не происходит (рост и вес стоят на месте). Азотистый баланс бывает положительным (анаболизм) и отрицательным (катаболизм). Положительный – количество поступления азота больше, ежели его выведение. Это способствует росту мышц, волос и ногтей.

Отрицательный азотисты баланс – количество выведенного азота из организма превышает его поступление в него. Данный процесс возникает при недостаточном потреблении полноценных белков с пищей.

Со временем наступает белковое голодание, которое влечет за собой существенную потерю массы тела, ослабление мышц, выпадение волос и отвисание кожи. Функции белков в организме человека несут пользу, но только при сбалансированном взаимодействии с другими элементами.

Аминокислоты в белках

Аминокислоты – необходимые элементы для развития особи, которые находятся в белках и попадают в организм в процессе его переработки.

Аминокислоты необходимы для:

  • выносливости;
  • развития мышц;
  • сжигания жиров;
  • эластичности кожи и другое.

Аминокислоты разделены на заменимые и незаменимые. Вторые – поступают в организм вместе с едой, самостоятельно организмом не вырабатываются. Первые – возникают в органах в процессе взаимодействия различных элементов, также могут поступать из внешней среды.

Белковая недостаточность: причины развития, признаки

Функции белков в организме человека при нарушении вызывают белковый недостаток – болезнь, связанная с быстрым распадом его на элементы или дефицитом его поступления с пищей. Выделено 2 типа недостаточности: первичная и вторичная. Первичная недостаточность белка возникает при малом попадании белковых веществ внутрь организма из внешней среды.

К группе риска относятся люди, которые слабо питаются, практикуют различные диеты и отказываются от еды животного происхождения.

Вторичная недостаточность развивается у людей с ускоренным перевариванием белка. Причинами становятся разные болезни, спровоцированные различного рода инфекциями, патологии почек или наследственные недуги, нарушающие метаболические процессы.

Признаки белкового дефицита:

  • быстрое похудение;
  • ухудшение состояния волос;
  • шелушение кожи;
  • слабость и головокружение;
  • мышечная боль;
  • перепады настроения;
  • тошнота;
  • появление метеоризма;
  • нерегулярный стул;

  • увеличение печени.

Лечение такого недуга нацелено на повышение количества белковых элементов в организме и нормализации его обмена. Также, лечится основная болезнь, которая спровоцировала дефицит белков.

Переизбыток белков: причины, симптомы

Переизбыток белков – чрезмерное накопление в организме продуктов его переработки. Основной причиной появления переизбытка белка является не правильное питание, при котором потребление протеиновой еды существенно преобладает над углеводными и жирными продуктами.

В группе риска заболевания попадают любители мясной пищи или люди, которые практикуют протеиновые диеты. Также, переизбыток белка провоцируется наличием заболеваний эндокринной системы, генетических отклонений или нарушением метаболизма. Переизбыток белков нарушает работу человеческих органов и приводит к сбою в системах жизнедеятельности.

Выделены симптомы, сигнализирующие о наличии проблемы:

  • боль в суставах;
  • разрушение зубов;
  • снижение иммунитета;
  • боль в пояснице;
  • набор веса;
  • быстрая утомляемость и другие.

Излишек белка может спровоцировать инфаркт. При наличии симптомов переизбытка протеинов необходимо исключить белковые продукты из рациона и пройти курс лечения.

Нормы белка для взрослого человека

Нормы белка для взрослого человека в среднем составляет 85г на сутки при размеренной активности. Белок усваивается организмом на 80% из животной пищи и на 60% из растительной. Норма белкового потребления особи рассчитывается, выходя из двух факторов: вес человека и его физическая занятость.

Например:

  • При малоподвижном образе жизни потребность в белке составляет 1г на 1кг веса.
  • При средних нагрузках (поход в спортзал 1 – 2 раза в неделю или активный отдых на выходных, ежедневные пешие прогулки) – 2г на 1кг веса.
  • При тяжелых тренировках и усиленном труде – 3г на 1кг массы человека.

Нормы потребления протеинов зависят и от индивидуальных особенностей особи. Количество употребления нужного вещества каждый может контролировать сам, прислушиваясь к личным потребностям и обращая внимания на признаки и симптомы.

Правильное белковое питание для организма

Белки – основной элемент для развития, обновления и нормализации функционирования организма.

Для поддержания красоты и здоровья тела необходимо соблюдать правила белкового питания ежедневно:

  • Употреблять белковую пищу на завтрак, обед и ужин в необходимом количестве учитывая образ жизни, возраст и пол.
  • Повышать потребление протеинов в зависимости от желаемого результата. Спортсменам его нужно больше для набора мышечной массы, худеющим – меньше.
  • Следить за белковым балансом, нарушение которого приводит к плохому самочувствию и нарушению функциональности органов.
  • Соблюдать питьевой режим, не менее 1,5л воды употреблять в сутки. Она участвует во всех процессах жизнеобеспечении человека и ускоряет метаболизм.
  • Белок попадать в организм должен как от животной, так и от растительной пищи. В зависимости от происхождения, протеин отличается функциональными воздействиями на организм.

Особенности белкового питания для роста мышц

Мускулатура человека не укрепляется и не нарастает только от физических нагрузок. Положительное мышечное развитие зависит от взаимодействия тренировок и питания. Строительным материалом для роста мышц выступает белок. Это одна из его функций для организма человека.

Для укрепления физической формы спортсмену необходимо в среднем употреблять 200 – 300г белка мужчинам, 150 – 200г продукта женщинам. При этом, нарушать балансовое соотношение БЖУ (белков, жиров, углеводов) не рекомендуется. Протеиновые продукты в рационе должны преобладать через два часа после тренировок и за пару часов до сна.

Лучшее время для углеводной еды – в первой половине дня и за три часа до тренировки. Поступление жиров происходит на протяжении всего дня в минимальном количестве, а во второй половине дня исключается вовсе.

Таблица белковых продуктов

В таблице наведены продукты, состав белка в которых более высока, ежели в остальных, и они необходимы для составления ежедневного рациона для наращивания мышечной массы без нанесения ущерба здоровью.

Продукт, 100г Белки, г Жиры, г Углеводы, г Норма потребления на сутки
Филе курицы 28 3 0 300г
Мясо индейки 31 7 0 300г
Телятина 22 3 0 200г
Печень куриная 19 5 1 150г
Печень говяжья 23 5 5 120г
Рыба морская 9 — 40 0,5 — 20 0 — 4 250г
Рыба речная 2 — 25 0,2 — 7 0 400г
Морепродукты 15 — 20 0,7 — 1 0,1 – 0,3 200г
Яйцо куриное 11 9 0,5 5шт.
Молоко 4 1 — 5 5 500г
Творог 20 1 — 18 2 250г
Орехи 9 70 4 40г
Семечки 20 — 30 35 10 20г
Гречка 4 1 17 200г
Овсянка 3,5 1,5 14 200г
Морская капуста 2 0 4 250г
Зеленые овощи 0,8 — 3 0,1 2,2 — 11 200 – 400г
Сухофрукты 2 — 6 0,1 — 3 49 — 79 50г

Нормы потребления на сутки (в таблице) – это информация о количестве продукта, которого можно потребить в готовом виде без вреда для здоровья, включив его в рацион. Из этого списка можно сформировать меню на неделю для жиро сжигания и приобретения рельефных форм.

Меню на неделю

Основные правила питания для набора мышечной массы – питаться часто, избегать сахара и соли, пить много воды.

Приблизительное меню на неделю:

День недели Завтрак Перекус Обед Перекус Ужин
Поне-дельник Каша гречневая на воде + яйцо вареное + йогурт нежирный; Орехи или семечки; Курица вареная + тушеные овощи; Сухо-фрукты; Омлет из яичных белков + кефир;
Вторник Овсяная каша на воде + банан + кефир нежирный; Горсть сухо-фруктов; Тушеная говяжья печень с овощами; Орехи или семечки; Отварная куриная грудка + йогурт нежирный;
Среда Рис отварной + сухофрукты + твердый сыр + зеленый чай; Вареная рыба; Вареная куриная печень + яичный белок; Нежирные паровые котлеты – 2шт.; Море-продукты + варенные яйца;
Четверг Творог + нежирный йогурт + банан; Яичный омлет; Рыбное заливное с желатином; Кефир нежирный + овсяные оладьи; Телятина запеченная с овощами;
Пятница Любая каша на воде + овощи + молоко; Куриные паровые котлеты – 2шт.; Овощная запеканка с телятиной; Творог + банан; Омлет + молоко + морская капуста;
Суббота Любая каша + рыба вареная + кефир; Море-продукты; Творог + банан; Сухофрукты; Куриный паштет + нежирный йогурт;
Воск-ресенье Вареные яйца + творог + компот из сухо-фруктов; Нежирный йогурт + банан; Отварной рис + куриная грудка; Орехи или семечки; Рыбные котлеты + вареная морковь.

Особенности белкового питания, желающим похудеть

Процесс похудения без белков невозможен. Они ускоряют обмен веществ, помогают сжигать жир и укрепляют мышечную массу.

Для усваивания белков организм тратить больше энергии, чем для обработки жиров, что обеспечивает стремительное похудение.

Для эффективности диеты нужно отдавать предпочтение белковым продуктам, которые содержат мало углеводов и еще меньше жиров.

Во избежание нарушения белкового баланса и нанесения вреда здоровью во время диеты достаточно следовать некоторым правилам:

  • Разбить приемы пищи на 5 – 6 маленьких порций з перерывами не менее 3-х часов. С маленькими дозами протеина организму удастся безболезненно справится с ним и направить на борьбу с лишними килограммами.

  • На ужин принимать только белок и в не большом количестве. Вместе с продуктами его распада из организма выйдет застоявшаяся жидкость.
  • Сохранять полезность продуктов при приготовлении. Лучшие способы: варение, тушение, запекание.
  • Углеводы и жиры употреблять умеренно, в первой половине дня.
  • Овощи и зелень в ежедневном рационе необходимы как источники витаминов и минералов для налаживания пищеварения.
  • Приправы и заправки употреблять из натуральных компонентов: укроп, петрушка, сушенные травы, чеснок, лук и другие.
  • Исключение соли способствует быстрому расщеплению жира и выхода ненужной жидкости.
  • Употребление воды в достаточном количестве (1,5 – 2л в сутки) обеспечит хорошее самочувствие и привлекательный вид, также ускорит похудение.

Выход из белковой диеты должен протекать постепенно с уменьшением протеиновых продуктов и возвращения к сбалансированному питанию БЖУ (белок, жир, углевод) в соотношении 35:20:45.

Функции белков в организме человека играет большую роль для здоровья.

Функции белков обеспечивают качественное развитие всех систем человеческого организма, поэтому их потребление нужно контролировать, обогащая ежедневный рацион питания важными элементами и следить за их взаимодействием.

Автор: Вероника Быстрякова

Оформление статьи: Анна Винницкая

Видео о функциях белков в организме

Основные функции белка в организме человека:

ladysdream.ru

Транспортная функция белков - это... Что такое Транспортная функция белков?

Транспортная функция белков — участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму.

Есть разные виды транспорта, которые осуществляются при помощи белков.

Перенос веществ через клеточную мембрану

У всех клеток есть мембрана, состоящая из двойного слоя липидов. В клетку должны поступать многие необходимые для жизни вещества (сахара, аминокислоты, ионы щелочных металлов), но липидный бислой для них практически непроницаем. Поэтому в состав мембраны входят транспортные белки, которые и осуществляют перенос полярных или заряженных соединений. Транспорт этих соединений в клетку делится на активный и пассивный. Пассивный транспорт — транспорт веществ из области с высокой концентрацией в область низкой без затрат энергии, то есть диффузия. Она делится на 2 варианта: простая и облегчённая.

В облегчённой диффузии участвуют белки-переносчики. Этот вариант может сопровождаться конформационными изменениями белка. Есть несколько путей переноса веществ в этом случае: когда участвует один белок и когда участвуют несколько. Если участвует один белок(транслоказа), то он связывает вещество, потом сближается с другой стороной мембраны, отдаёт связанное вещество и возвращается в исходное состояние. Если участвуют несколько белков, то один связывается с веществом, потом передаёт его другому и так далее, пока вещество не дойдёт по цепи до противоположной стороны мембраны.

Пассивный транспорт обеспечивают также белки-каналы. Каналообразующие белки образуют в мембране водные поры, через которые (когда они открыты) могут проходить вещества. особые семейства каналообразующих белков (коннексины и паннексины) формируют щелевые контакты, через которые низкомолекулярные вещества могут транспортироваться из одной клетки в другую (через паннексины и в клетки из внешней среды).

Активный транспорт происходит против градиента концентрации и протекает с затратой энергии. В активном транспорте участвуют белки-переносчики. Энергия, которая требуется для осуществления активного транспорта, обычно получается транспортными белками при расщеплении АТФ. Один из наиболее изученных белков, осуществляющих активный транспорт — Na+/K+-аденозинтрифосфатаза. За полный цикл работы этого насоса в клетку попадают из внешней среды 3 иона Na+ и выбрасывается наружу 2 иона K+.

Ещё один путь попадания веществ внутрь клетки — их поглощение путем эндоцитоза. В этом процессе также могут участвовать специальные транспортные белки. Например, гастромукопротеид (внутренний фактор Касла), который синтезируется в клетках слизистой оболочки желудка, обеспечивает поглощение путем эндоцитоза клетками подвздошной кишки витамина B12.

Перенос веществ внутри клетки

Этот перенос осуществляется между ядром и другими органоидами и цитоплазмой клетки. Например, перенос белков между ядром и цитоплазмой (ядерно-цитоплазматический транспорт) происходит благодаря ядерным порам, которые пронизывают двухслойную оболочку ядра. Они состоят примерно из тридцати белков — нуклеопоринов. Вещества переносятся из цитоплазмы в ядро клетки вместе с белками — транспортинами. Эти белки узнают вещества, предназначенные для транспорта в ядро, и связываются с ними. Затем этот комплекс белков заякоривается на белках ядерной поры и попадает в её канал, а затем в ядро. Там она связывается ещё с одним белком и распадается, а транспортины направляются обратно в цитоплазму.

Перенос белков из цитоплазмы к другим органоидам клетки происходит с помощью белков-переносчиков. В этом процессе участвуют также шапероны.

Также для транспортировки веществ внутри клеток используются микротрубочки — структуры, состоящие из белков тубулинов. По их поверхности могут передвигаться митохондрии и мембранные пузырьки с грузом (везикулы). Этот транспорт осуществляют моторные белки. Они делятся на два типа: цитоплазматические динеины и кинезины. Эти две группы белков различаются тем, от какого конца микротрубочки они перемещают груз: динеины от + -конца к — -концу, а кинезины в обратном направлении.

Перенос веществ по организму

Транспорт веществ по организму в основном осуществляется кровью. Кровь переносит гормоны, пептиды, ионы от эндокринных желез к другим органам, переносит конечные продукты метаболизма к органам выделения, переносит питательные вещества и ферменты, кислород и углекислый газ.

Наиболее известный транспортный белок, осуществляющий транспорт веществ по организму — это гемоглобин. Он переносит кислород и диоксид углерода по кровеносной системе от лёгких к органам и тканям. У человека около 15 % углекислого газа транспортируется к лёгким с помощью гемоглобина. В скелетных и сердечной мышцах перенос кислорода выполняется белком, который называется миоглобин.

В плазме крови всегда находятся транспортные белки — сывороточные альбумины. Жирные кислоты, например, транспортируются альбуминами сыворотки крови. Кроме того, белки группы альбуминов, например, транстиретин, транспортируют гормоны щитовидной железы. Также важнейшей транспортной функцией альбуминов является перенос билирубина, желчных кислот, стероидных гормонов, лекарств (аспирин, пенициллины) и неорганических ионов.

Другие белки крови — глобулины переносят различные гормоны, липиды и витамины. Транспорт ионов меди в организме осуществляет глобулин — церулоплазмин, транспорт ионов железа — белок трансферрин, транспорт витамина B12 — транскобаламин.

См. также

dic.academic.ru


Смотрите также

Календарь мероприятий

Уважаемые родители и ребята, ждем вас на занятия со 2го сентября по расписанию. Расписание занятий Понедельник Среда Пятница Дети с 8-13 лет 16.50 - 18.15 16.50 - 18.15 16.50 -...
Итоги турнира: 1е место - Кравченков Сергей (Алтай), 2е место - Спешков Станислав(СПБ), 3е место - Набугорнов Николай (Алтай). Победители были награждены...

Новости

Поздравляем наших участников соревнования по кикбоксингу "Открытый кубок ГБОУ ДОД ДЮСШ Выборжанин"! Юрий Кривец и Давид Горнасталев - 1 место,...