Максимальное время восстановления запасов гликогена в мышцах после работы большого объема


Максимальное время восстановления запасов гликогена в мышцах после работы большого объема. Время восстановления скелетных мышц после тренировки.

Максимальное время восстановления запасов гликогена в мышцах после работы большого объема. Время восстановления скелетных мышц после тренировки.

Время восстановления мышц в бодибилдинге - это один из самых важных факторов роста мышц. Как известно, мышцы растут не во время тренировок, а во время отдыха и восстановления. Даже если вы придерживаетесь всех правил тренировок бодибилдинга, без достаточного времени для восстановления все ваши усилия будут потрачены впустую.

Каждый, кто начал заниматься бодибилдингом, рано или поздно столкнется с этим вопросом. Так какое же оптимальное время для восстановления мышц?

Мы рассмотрим вопросы: фазы восстановления скелетных мышц после тренировки, скорость и время их протекания, эффект увеличения восстановительной способности организма под влиянием физических упражнений, а точнее ошибочные мнения, и эффект влияния различных видов тренировок на время восстановления скелетных мышц.

Повышение способности к восстановлению.

Наше тело имеет ограниченную способность к восстановлению, но многие начинающие культуристы думают, что чем больше стаж тренировок, тем быстрее мышечное восстановление. Но это не так. Да, внутренние органы и железы, которые вырабатывают гормоны, начинают работать более эффективно и увеличивают скорость восстановления, но не на много. В противном случае профессиональные спортсмены не будут использовать допинг!

Еще один миф. Некоторые люди думают, что чем больше мышц, тем больше надо заниматься физическими упражнениями. Но и это не так. Позвольте объяснить почему. Большие и малые мышцы могут преодолеть определенный максимальный вес и в результате огромных механических напряжений и получают тренировочный стресс и повреждения миофибрилл пропорционально силе, которую могут развить мышцы.

Например, представим что, начинающий бодибилдер делает жим лежа с весом 60 кг на десять повторений и повреждает 5% миофибрилл, а опытный бодибилдер жмет 150 кг на 10 повторений, и также получает микротравмы в размере 5%. В результате, и начинающий и опытный получает достаточный стимул для роста мышц.

Скорость восстановления мышц ограничена из-за ограничения скорости метаболических процессов в организме человека. Учитывая, что скорость обмена веществ у молодых людей примерно одинакова, то для восстановление после физических нагрузок и увеличения бицепса размером 56 см надо больше времени, чем требуется для бицепса размером 37 см. Более крупные мышцы тратят больше энергии, чем малые на одной и той же тренировке.

Еще одна ошибка существует. Например, новичок приходит в тренажерный зал, делает упражнения для каждой мышечной группы раз в неделю, для каждого упражнения два рабочих подхода и в первое время получает хороший результат. Затем, он увеличивает нагрузку на тренировках, чтобы стать сильнее и делает 4 Сета в упражнении, но продолжает тренировать каждую мышцу раз в неделю. В результате, сила и мышечная масса не растет. Почему?

Поскольку нагрузка на тренировках была увеличена, расходы энергии также увеличиваются, а время восстановления мышц остается прежним - одна неделя, которой уже не достаточно. Как решить проблему? Необходимо увеличить время отдыха, например, до двух недель. А что делать, пока мышцы восстанавливаются? Делать легкие тренировки, которые не энергоемкие и не провоцируют микротравмы мышц. Но, глядя на парней в тренажерках, до этого мало кто догадывается. Все качают и качают, больше и интенсивнее, и чаще! Но, не растет!

Именно по этой причине, многие обращаются к фармакологии, потому что не пытаются подумать и понять суть, не изучают информацию. Хотя правильной инфы сейчас не хватает. Даже в буржунете по запросу "Muscle Recovery Time" на первом месте авторитетный сайт, который предлагает устаревшую инфу да еще и поверхностно.
Конечно, использование допинга может ускорить восстановление мышц, но это надо, я считаю, профессиональным бодибилдерам, которые зарабатывают этим деньги и имеют большие амбиции, и планы, и они понимают, что это чревато последствиями, по этому находятся под наблюдением врачей. Соглашаясь на использование допинга вы должны понимать, что это будет иметь последствия для вашего организма.

Еще раз скажу, что я не противник стероидов и другой фармподдержки, но вышесказанное надо понимать.

Влияние различных Видов тренировок на восстановление мышц.

Различные виды тренировок, требуют разное время для восстановления после. Например, аэробные упражнения вызывают значительные затраты энергии, но не вызывает повреждения большого количества миофибрилл. После аэробной тренировки восстанавливается главным образом мышечный гликоген. В зависимости от продолжительности тренировки, может потребоваться от одного дня до трех.

Анаэробные упражнения также расходуют энергию, но плюс к этому провоцируют микротравмы мышц. По этой причине, восстановление займет больше времени, потому что необходимо пополнить мышечный гликоген и восстановить поврежденные миофибриллы.

Восстановления мышц после физических нагрузок имеет следующие временные фазы:

1. восстановление креатин фосфата.
2. удаление продуктов распада (молочная кислота, ионы водорода).
3. восстановление электролитного баланса и жидкости.
4. восстановление мышечного гликогена.
5. восстановление белковых структур.

Восстановление креатин фосфата.

Креатин фосфат дает нам возможность преодолеть большие, но краткосрочные нагрузки или сделать мощное, но краткосрочное усилие. Например, быстрый бег и жим лежа с максимальными весами. Количество фосфокреатина быстро уменьшается. В течение 15-20 секунд упражнения, количество креатин фосфата падает почти до нуля, но поднимается очень быстро. В течение 2, 5 минут после упражнения восстанавливается до первоначального уровня, а через 5 минут происходит суперкомпенсация.

Удаление продуктов распада (молочная кислота, ионы водорода).

В работающих мышцах из-за увеличения анаэробного гликолиза (силовые тренировки), образуется молочная кислота и ионы водорода, которые во время тренировки уменьшают производительность мышц. Устранение этих продуктов распада около одного часа времени составляет. Так - что миф о том, что мышцы болят на следующий день из-за молочной кислоты, которая накапливалась в мышцах на тренировке вчера - развеян.

Восстановление электролитного баланса и жидкости.

В результате выполнения работ, связанных со значительным потоотделение, организм теряет минералы, затем следует период пополнения воды и минеральных солей, которые должны поступать с пищей.

Восстановление мышечного гликогена.

Время восстановления мышечного гликогена после тренировки зависит от продолжительности и интенсивности тренировки. В среднем, после силовой тренировки восполнение занимает около двух дней, а на третий день происходит суперкомпенсация. Но если тренировка была очень длинная, например многочасовой бег, тогда может потребоваться более трех дней.

Восстановление белковых структур.

Во время тренировки с отягощениями огромные механические нагрузки возникают. Миофибриллы, которые находятся в мышечных волокнах, подвергаются мощному разрывному воздействию. Поскольку миофибриллы все разной длинны, то во время упражнения самые короткие миофибриллы берут на себя нагрузку и разрываются.

После того, как миофибрилла разрушена, она должна быть полностью уничтожена, лизосомы начинают ее разбирать. Далее, за семь дней она успевает разрушиться в течении трех - четырех дней, а потом наполовину синтезироваться, так же 3-4 дня. Далее, на 90-95% мышцы восстанавливаются в течении пятнадцати дней, а вообще, полностью - коло 90 дней.

Дольше всех строится сухожильная часть или коллагеновая, (переходная из мышцы в сухожилие. Т. е. сама мышца уже восстановилась, а сухожильная часть еще продолжает восстанавливаться.

Из вышеизложенного следует, что развивающие, тяжелые тренировки на одну и ту же группу мышц следует проводить не чаще одного раза в две недели!

Помните! Только полное восстановление мышц! В противном случае, хороших и стабильных результатов в увеличении мышечной массы не видать. Очень частые тренировки могут принести больше вреда, чем пользы, могут привести к истощению организма. Получая адекватный отдых, мышцы будут радовать вас увеличением силы и массы.

Время восстановления мышц после тренировки. Виды восстановления организма

     Существует 4 основные стадии восстановления мышц после тренировки, каждая стадия имеет свои нюансы, зная особенности которых, достигается сокращения времени восстановления мышц, что только положительно скажется на росте силы, массы и выносливости.

     ♦ Быстрая стадия

     Данная стадия длиться в течении 30 минут, сразу после завершения тренировки. В этот период времени, начинает восстанавливаться обмен веществ , который служит основой для накапливания запасов гликогена в печени и мышечных тканях, креатинофосфата и АТФ. Также приводится в норму кровеносная система и начинает вырабатываться гормон инсулин.

     ♦ Стадия замедленного восстановления

     После того, как нормализовался обмен веществ, улучшается синтез белков, аминокислот и ферментов, в пищеварительном тракте улучшается усвоение важных питательных компонентов, которые направляются на восстановление поврежденных клеток и мышечных тканей.

     ♦ Стадия суперкомпенсации

     Она наступает после 2-3 дней от последней тренировки и длиться на протяжении 5 дней, она в принципе не отличается и очень схожа со стадией замедленного восстановления, но в этот период происходит рост морфологических и функциональных особенностей организма. Именно в этот период времени на стадию суперкомпенсации должны проходить следующие физические нагрузки, это лучшее время для тренировки.

     ♦ Стадия отсроченного восстановления

     В данной последней стадии восстанавливаются все физические параметры организма до своего первоначального уровня, конечно, это при условии, что во время наступления предыдущей стадии суперкомпенсации отсутствовали физические нагрузки.

Максимальное повышение кислотности наблюдается при работе в зоне. Биохимические изменения при утомлении

При любой длительной мышечной деятельности развивается состояние, характеризующееся временным снижением работоспособности, — состояние утомления .

Это нормальное состояние организма, играющее защитную роль.

Оно сигнализирует о приближении неблагоприятных биохимических и функциональных сдвигов, возникающих в процессе работы, и для их предотвращения автоматически снижает интенсивность мышечной деятельности.

В состоянии утомления снижается концентрация АТФ в нервных клетках, нарушается синтез ацетилхолина, деятельность ЦНС, замедлятся скорость переработки сигналов, в моторных центрах развивается охранительное торможение, связанное с образованием γ-аминомасляной кислоты.

Совет!

Угнетается деятельность желез внутренней секреции, снижается активность ферментов, в первую очередь, миозиновой АТФазы. Уменьшается скорость выполнения работы. Уменьшается активность ферментов аэробного окисления и сопряжение реакций окисления и фосфорилирования.

Для поддержания уровня АТФ происходит вторичное усиление гликолиза, сопровождающееся закислением внутренней среды и нарушением гомеостаза. Усиливающийся катаболизм белковых соединений сопровождается повышением содержания мочевины в крови.

В работающих мышцах при утомлении происходит исчерпание запасов энергетических субстратов (креатинфосфата, гликогена). Накапливаются продукты распада (лактат, кетоновые тела) и отмечаются резкие сдвиги внутриклеточной среды. Причины развития утомления мышцах не совсем ясны.

В большинстве случаев оно рассматривается как комплексное явление, при котором причиной снижения работоспособности может быть выход из строя одного компонента в сложной взаимосвязанной системе органов и функций, обеспечивающих выполнение работы, или нарушение взаимосвязи между ними.

Роль ведущего звена в развитии утомления может принимать на себя любой орган, если нагрузка для него окажется неадекватной.

Первопричиной утомления может стать: 1) снижение энергетических ресурсов; 2) уменьшение активности ключевых ферментов из-за угнетающего действия продуктов метаболизма тканей; 3) нарушение целостности функционирующих структур из-за недостаточности их пластического обеспечения; 4) изменение нервной и гормональной регуляции и др. Установить в каждом конкретном случае ведущее звено можно только на основе точных измерений и количественного анализа результатов выполнения работы.

При интенсивной кратковременной работе основной причиной утомления служит развитие охранительного торможения в центральной нервной системе из-за нарушения баланса АТФ/ФДФ и угнетение миозиновой АТФазы из-за продуктов обмена.

При относительной умеренной нагрузке и продолжительной работе основными причинами утомления становятся факторы, связанные с нарушением деятельности энергообеспечения и со снижением возбудимости мышц из-за выхода калия в межклеточное пространство.

Время для восстановления мышц. Немного полезной теории

Человеческий организм – самоподдерживающаяся и самовосстанавливающаяся система. Эти два понятия связаны. Есть некая точка равновесия, когда все процессы внутри организма идут в обычном темпе (гомеостаз, называется). Например, это состояние покоя. Когда человек начинает активно тренироваться, его тело задействует все резервы, чтобы обеспечить такое же нормальное стабильное состояние, но уже в процессе тренировки. После нагрузок организм восстанавливает те самые резервы, потраченные на совершение физической работы.

Он восстанавливает то исходное биохимическое, физиологическое и анатомическое состояние, которое было до нагрузки. Поэтому, чтобы понять как восстановить силы после нагрузок важно знать, что требуется организму для возобновления потраченных ресурсов. В частности, одним из необходимых элементов является здоровый сон.

Природа предусмотрела все, в том числе и способность организма адаптироваться к тяжелой физической работе. Тренировка на грани возможностей (или как говорят атлеты – «до отказа») активирует в нашем теле этот самый процесс адаптации, который выражается в росте мышц. Это естественная подготовка тела к преодолению более серьезных нагрузок.

На процессе адаптации организма к увеличивающимся нагрузкам основаны все виды тренинга. Как на рост мышечной массы, так и на увеличение силы или выносливости. Повышение возможностей организма происходит как раз в период восстановления.

Теперь вы понимаете, что неправильное восстановление приведет к отсутствию желаемого прогресса. А тренироваться безрезультатно или и того хуже в ущерб здоровью, поверьте, никто не захочет.

Время восстановления мышц. Восстановление мышц после тренировки

Сама тренировка представляет собой стресс для мышц. Во время упражнения они получают микроразрывы, растяжения. Их организм начинает постепенно залечивать. В целом восстановление мышц после тренировки проходит в четыре этапа:

  1. Быстрое. Продолжается в течение получаса после тренировки. В этот период будет восстанавливаться частота пульса. Нормальным становится содержание ходит содержание таких гормонов стресса, как инсулин, адреналин, кортизол. Также восполняются запасы быстрых «энергетиков», израсходованных во время тренировки - АТФ, креатинфосфата, гликогена.
  2. Медленное, или компенсация. Начинается репарация поврежденных клеток и тканей. Здесь синтезируется белок с аминокислотами и ферментами. Очень важно, чтобы эти питательные вещества поступили еще из вне, поэтому на данном этапе употребляют углеводные продукты, используют спортивное питание для восстановления сил.
  3. Суперкомпенсация, или сверхвосстановление. Наступает спустя 2-3 дня от последней тренировки, имеет продолжительность около 5 суток. Во многом похожа на предыдущую фазу, но здесь мышечные волокна утолщаются, чтобы в следующий раз иметь возможность выдержать объем нагрузок. В этот период должна быть следующая тренировка, ведь после него организм возвращается к исходному состоянию.
  4. Отсроченное восстановление после тренировки. Если новой нагрузки не будет, то вся предыдущая работа была выполнена зря. Мышцы вернутся к дотренировочному уровню развития, который характерен для привычного образа жизни без спортзала.

Силовые качества преимущественно зависят от содержания в мышцах. Биохимические основы скоростно-силовых качеств

Быстроту можно определить как комплекс функциональных свойств организма, непосредственно и преимущественно определяющих время двигательного действия. При оценке проявления быстроты учитывается скрытое время двигательной реакции, скорость одиночного мышечного сокращения, частота мышечных сокращений.

Под силой мышц обычно понимается способность преодолевать внешнее сопротивление, либо противодействовать ему посредством мышечных напряжений.

Скоростно-силовые качества главным образом зависят от энергообеспечения работающих мышц и от их структурно-морфологических особенностей, в значительной мере предопределенных генетически.

Проявление силы и быстроты характерно для физических нагрузок, выполняемых в зоне максимальной и субмаксимальной мощности. Следовательно, в энергообеспечении скоростно-силовых качеств преимущественно участвуют анаэробные пути ресинтеза АТФ - креатин-фосфатный и гликолитический.

Быстрее всего развертывается ресинтез АТФ за счет креатинфосфатной реакции. Она достигает своего максимума уже через 1-2 с после начала работы. Максимальная мощность этого способа образования АТФ превышает скорость гликолитического и аэробного путей синтеза АТФ в 1,5 и 3 раза соответственно. Именно за счет креатинфосфатного пути ресинтеза АТФ мышечные нагрузки выполняются с самой большой силой и скоростью. В свою очередь, величина максимальной скорости креатинфосфатной реакции зависит от содержания в мышечных клетках креатинфосфата и активности фермента креатинкиназы.

Увеличить запасы креатинфосфата и активность креатинкиназы возможно за счет использования физических упражнений, приводящих к быстрому исчерпанию в мышцах креатинфосфата.

Для этой цели используются кратковременные упражнения, выполняемые с предельной мощностью.

Хороший эффект дает применение интервального метода тренировки, состоящей из серий таких упражнений. Спортсмену предлагается серия из 4-5 упражнений максимальной мощности продолжительностью 8-10 с. Отдых между упражнениями в каждой серии равен 20-30 с. Продолжительность отдыха между сериями составляет 5-6 мин.

При выполнении каждого упражнения в мышцах происходит снижение запасов креатинфосфата. Во время отдыха между упражнениями в мышцах включается гликолитический путь ресинтеза АТФ. Но поскольку в этот промежуток времени мышцы не функционируют, то образующиеся молекулы АТФ используются для частичного восстановления запасов креатинфосфата. Достаточно продолжительное время отдыха между сериями позволяет почти полностью восполнить содержание креатинфосфата. Однако суперкомпенсация не развивается, так как отдых сменяется новой серией упражнений.

В результате этого в мышцах постепенно происходит исчерпание запасов креатинфосфата. Как только будет достигнута критическая величина снижения концентрации креатинфосфата в работающих мышцах, сразу же уменьшится мощность выполняемых нагрузок. Обычно такое состояние достигается после 8-10 серий упражнений.

Во время отдыха после тренировки наблюдается выраженная суперкомпенсация креатинфосфата. Поэтому многократное применение таких тренировок должно привести к повышению в мышцах запасов креатинфосфата, активности креатинкиназы и положительно сказаться на развитии скоростно-силовых качеств спортсмена.

Выполнение скоростных и силовых нагрузок в зоне субмаксимальной мощности обеспечивается энергией в основном за счет гликолитического ресинтеза АТФ. Возможности этого способа получения АТФ обусловлены внутримышечными запасами гликогена, активностью ферментов, участвующих в этом процессе, и резистентностью организма к молочной кислоте, образующейся из гликогена.

Поэтому для развития скоростно-силовых способностей, базирующихся на гликолитическом энергообеспечении, применяются тренировки, отвечающие следующим требованиям.

Во-первых, тренировка должна приводить к резкому снижению содержания гликогена в мышцах с последующей его суперкомпенсацией.

Во-вторых, во время тренировки в мышцах и в крови должна накапливаться молочная кислота для последующего развития резистентности к ней организма.

Для этой цели могут быть использованы методы повторной и интервальной работы. Применяемые упражнения должны вызывать повышение скорости гликолитического пути ресинтеза АТФ и приводить к усиленному образованию и накоплению лактата в работающих мышцах и его выходу в кровяное русло. Таким условиям соответствует выполнение предельных нагрузок продолжительностью в несколько минут. В случае интервальной тренировки можно использовать серии из 4-5 таких упражнений. Отдых между упражнениями внутри серии - несколько минут. Хороший эффект дает постепенное уменьшение времени отдыха - например, с 3 до 1 мин. Каждое такое упражнение вызывает распад внутримышечного гликогена и образование молочной кислоты. Короткие промежутки отдыха между упражнениями недостаточны для устранения лактата. Отдых между сериями упражнений, составляющий 15-20 мин, также недостаточен для полного устранения лактата, и поэтому упражнения в каждой последующей серии выполняются на фоне повышенной концентрации в мышцах молочной кислоты, что способствует формированию резистентности организма к повышенной кислотности.

zdorovaya-eda.com

Основы метаболизма гликогена — CMT Научный подход

Переводчик: Татьяна Архарова

Редактор: Вероника Рис

Источник: NCBI

Во время интенсивных упражнений и длительных физических нагрузок мышечный гликоген расщепляется, высвобождая молекулы глюкозы. Затем в результате анаэробных и аэробных процессов эти молекулы окисляются мышечными клетками с образованием молекул аденозинтрифосфата (АТФ), необходимых для сокращения мышц. Скорость, с которой разрушается мышечный гликоген, зависит, прежде всего, от интенсивности физической активности.

Рекомендуемая суточная норма потребления углеводов у взрослых мужчин и женщин, ведущих сидячий образ жизни, составляет около 130 г. Эта величина зависит от продолжительности и интенсивности упражнений. Например, в дни с небольшой физической активностью для восстановления мышц и гликогена мышечная ткань требует значительно меньше углеводов, чем в более тяжёлые тренировочные дни. По этой причине текущие рекомендации по потреблению углеводов у спортсменов варьируются в зависимости от ежедневной нагрузки. Однако спортсмены часто не потребляют достаточного количества углеводов. 

Гликоген хранится в цитозоле клеток, занимая 2% объёма клеток сердца, 1-2% объёма клеток скелетных мышц и 5-6% объёма клеток печени. Ни кратковременное голодание, ни длительное сидячее положение не влияют на запасы гликогена в мышцах, хотя гликоген в сердечной мышце может увеличиваться во время голодания, поскольку аминокислоты и глицерин преобразуются в глюкозу и сохраняются в виде гликогена, чтобы обеспечить сердце достаточными запасами энергии. 

Для подготовки организма к последующим тренировкам и соревнованиям важно, чтобы запасы гликогена в мышцах и печени были восполнены. Данная статья обобщает рекомендации по питанию, тренировкам и восстановлению у спортсменов и людей, занимающихся регулярной физической активностью. Во время интенсивных тренировок глюкоза в крови и мышечный гликоген являются основными видами «топлива», которые окисляются для получения АТФ. 

Помимо человеческих клеток мышц и печени, гликоген в небольших количествах накапливается в клетках мозга, сердца, клетках гладких мышц, почек, эритроцитах и лейкоцитах и даже жировых клетках. При нормальных условиях глюкоза — единственное топливо, которое мозг использует для производства АТФ; в состоянии покоя приблизительно 60% глюкозы в крови метаболизируется мозгом. 

Поскольку мозгу требуется глюкоза, крайне важно поддерживать эугликемию (нормальную концентрацию глюкозы в крови) во время отдыха и физических упражнений. Чтобы обеспечить достаточный запас глюкозы в мозге, печень выделяет глюкозу в кровоток. 

Использование мышечного гликогена во время упражнений снижает поглощение глюкозы из крови, тем самым помогая поддерживать уровень глюкозы в крови при отсутствии потребления углеводов. Достаточное потребление углеводов во время упражнений помогает поддерживать запасы гликогена в печени, и, как сообщается, экономит гликоген в мышечных клетках типа II (быстро сокращающихся). 

В 1920-х годах стало очевидно, что углеводы важны для тренировки мышц, что концентрация глюкозы в крови связана с усталостью и что увеличение потребления углеводов перед соревнованием, а также употребление леденцов во время него, предотвратило слабость и усталость. Несмотря на эти наблюдения и гораздо более раннее открытие гликогена в 1858 году, связь между содержанием углеводов в рационе, мышечным гликогеном и физической нагрузкой не была подтверждена до 1960-х годов.

Содержание гликогена во всем организме составляет приблизительно 600 г, и эта цифра варьируется в зависимости от массы тела, диеты, физической формы и физических упражнений. Во время интенсивных и длительных упражнений содержание гликогена в мышечных клетках может быть существенно ниже, но не падает менее 10% от начальных данных.

Роль гликогена

Мышечный гликоген — это не только источник энергии, но также и регулятор сигнальных путей, участвующих в тренировочной адаптации и влияющим на внутриклеточную осмоляльность. Измерение запасов гликогена в мышцах возможно благодаря методике мышечной биопсии.

Факторы, влияющие на запасы гликогена 

Запасы гликогена в печени и мышцах уменьшаются при физической нагрузке: чем дольше и интенсивнее активность, тем больше скорость и общее снижение запасов гликогена. Богатая углеводами диета приводит к постепенной суперкомпенсации запасов мышечного гликогена. 

Рисунок 1. Метаболизм гликогена в состоянии покоя и во время упражнений

Сокращение запасов гликогена в мышцах, которое происходит во время упражнений, является основным движущим фактором для последующего гликогенеза. После тренировки восстановление мышечного гликогена происходит в два этапа. 

На первом этапе синтез гликогена быстрый — 12-30 ммоль/г массы/ч, — не требуется инсулин и длится он 30-40 минут, если истощение гликогена значительное. Вторая фаза зависит от инсулина и протекает медленнее при эугликемии — 2-3 ммоль/г массы/час, — скорость которой может быть увеличена при дополнительном потреблении углеводов. 

Во время многих упражнений высвобождение инсулина притупляется, а адреналин выделяется надпочечниками. Скорость деградации гликогена (гликогенолиза) зависит от интенсивности упражнений. 

Измерение концентрации гликогена 

У тренированных и сытых спортсменов концентрация гликогена в мышцах составляет примерно 150 ммоль/кг массы после, по крайней мере, 8-12 часов отдыха. Она может достигать уровней 200 ммоль/кг массы у хорошо подготовленных, отдохнувших спортсменов после нескольких дней на высокоуглеводных диетах, а после длительных интенсивных тренировок гликоген в мышцах может упасть до <50 ммоль/кг массы. 

Когда гликоген в мышцах падает до <70 ммоль/кг массы, нарушается высвобождение кальция из саркоплазматического ретикулума. На рисунке 2 показано, как уровни мышечного гликогена могут меняться в течение 4 дней тяжелых тренировок, за которыми следуют 2 дня тренировок в среднем темпе.

Рисунок 2. Изменение уровней гликогена в мышцах

Поскольку ресинтез мышечного гликогена является относительно медленным процессом, спортсмены обычно тренируются со средними запасами мышечного гликогена. Всякий раз, когда запасы гликогена в мышцах уменьшаются в результате физической активности, потребление адекватного количества углеводов требуется для восстановления гликогена до нормального уровня или выше (суперкомпенсация). 

Для полного восстановления гликогена в течение 24 часов, как правило, требуется скорость 5-6 ммоль/кг массы/час. 

Запасы гликогена

У спортсменов, которые тренируются большую часть дня, скорее всего, запасы мышечного гликогена редко полностью восполняются. Sherman с коллегами обнаружили различия между участниками, которые на протяжении 7 дней тренировок придерживались умеренной или высокоуглеводной диеты. Запасы гликогена на должном уровне сохранялись при высокоуглеводной диете, тогда как у тех, кто придерживался умеренно-углеводной диеты, количество гликогена было снижено на 30-36%.

Время потребления углеводов после физической активности очень важно во время тренировок и соревнований, требующих больших усилий в течение одного дня. Если двухчасовая тренировка снижает содержание гликогена в мышцах на 75 ммоль/кг массы, и у спортсмена есть 6 часов отдыха перед следующей тренировкой, то 1,0-1,2 г углеводов/кг массы тела в час теоретически восстанавливают 80% окисленного гликогена. 

Если гликоген падает до 40 ммоль/кг веса, а достаточное количество углеводов с высоким гликемическим индексом принимается сразу после тренировки и с 30-минутными интервалами, то запасы гликогена могут полностью восстановиться через 4 или 5 часов. С другой стороны, если гликоген снизился до 150 ммоль/кг веса, для полного восстановления может потребоваться около 24 часов, поскольку максимальная скорость синтеза гликогена (10 ммоль/кг веса/час) поддерживается только приблизительно в течение 4 часов. 

Тип углеводов

В своём обзоре литературы Burke и другие исследователи пришли к выводу, что долгосрочное восстановление гликогена, например, ≥24 ч, не зависит от времени или типа углеводов. Это правда, что фруктоза лучше влияет на восстановление гликогена в печени, а глюкоза положительно влияет на мышечный гликоген, но большинство физически активных людей обычно потребляют достаточное количество фруктозы и глюкозы из продуктов и напитках. 

Углеводы в твёрдой и жидкой форме связаны с одинаковыми скоростями синтеза гликогена, поэтому спортсмены могут самостоятельно выбрать, как именно получать углеводы: из еды или напитков. 

Продукты с высоким гликемическим индексом

Вскоре после тренировки потребление продуктов с высоким гликемическим индексом (ГИ) может ускорить восстановление мышечного гликогена. Потребление углеводов с высоким ГИ эффективно для увеличения запасов гликогена в мышцах после тренировки. Burke с коллегами сообщают, что диета с высоким ГИ привела к лучшему восстановлению мышечного гликогена. 

Потребление продуктов с высоким ГИ важно в тех случаях, когда критически важен быстрый ресинтез мышечного гликогена. Как это часто бывает в науке, необходимы дополнительные исследования для выяснения условий, в которых потребление продуктов с высоким ГИ способствует восстановлению и повышению синтеза гликогена. 

Крахмалосодержащие продукты

Картофель, кукуруза и ячмень содержат много амилопектина и мало амилозы. Амилопектин менее устойчив к пищеварению, поскольку его глюкозные цепи более разветвлены по сравнению с амилозой. По этой причине крахмалы были изучены, чтобы оценить, как они влияют на метаболизм гликогена и физическую активность. 

С точки зрения здоровья, углеводы, полученные из необработанных или минимально обработанных цельных зёрен, овощей, бобов, молочных продуктов и фруктов, также содержат множество витаминов и минералов, клетчатку и многие важные нутриенты. 

Для людей, которые физически активны ежедневно, потребности в энергии могут легко превысить 3000 ккал/день, что приведёт к увеличению потребления с пищей углеводов, белков и широкого спектра микронутриентов. Увеличение потребления картофеля и злаковых может помочь обеспечить адекватное потребление питательных веществ, важных для здоровья, восстановления, адаптации и роста. 

Кетоз 

Голодание между приёмами пищи, во время сна или даже в течение более продолжительных периодов времени, оказывает минимальное влияние на концентрацию гликогена в мышцах у отдыхающих спортсменов, поскольку мышечный гликоген не является основным источником энергии в состоянии покоя. Длительное голодание и диеты с очень низким содержанием углеводов приводят к кетозу (кетоацидозу). 

В обзоре за 2017 год авторы пришли к выводу, что имеющиеся данные того, что кетоз может улучшить работоспособность или пополнить запасы гликогена, не убедительны. Необходимы дополнительные исследования для дальнейшего выяснения метаболических и функциональных реакций на кетоз, вызванных голоданием или длительной диетой с низким содержанием углеводов. Потребление белков с углеводами может быть полезным для стимуляции гликогенеза в течение нескольких часов после тренировки. 

Потребление белка также вызывает повышение концентрации инсулина в крови, что усиливает инсулинемическую реакцию на поступление углеводов, увеличивая скорость выработки гликогена. Важно, что при потреблении достаточного количества углеводов (>1,0 г/кг массы тела/час) добавление белков не способствует улучшению гликогенеза. 

Возраст и пол 

Мужчины и женщины, по-видимому, восстанавливают мышечный гликоген с одинаковой скоростью после тренировки при условии, что потребляется достаточное количество углеводов. У пожилых людей регулярные физические упражнения увеличивают содержание ГЛЮТ-4 и гликогена в скелетных мышцах, однако гликоген в состоянии покоя не увеличивается до уровня, наблюдаемого у молодых людей. Doering с коллегами сообщили, что у спортсменов в возрасте 55+ лет скорость восстановления мышц ещё медленнее.

Питание

К пище, богатой питательными веществами и с высоким содержанием углеводов, относятся зерновые — крупы, рис, макароны, хлеб и т. д., — большинство фруктов, некоторые овощи, особенно крахмальные, такие как картофель, бобы и горох, а также молочные продукты. Фрукты и молочные продукты содержат простые сахара, а также богаты основными питательными веществами. Фрукты — хороший источник пищевых волокон, витаминов, минералов и воды, а молочные продукты — хороший источник кальция, витамина D и калия. 

Заключение

Высокоуглеводная диета остаётся научно обоснованной рекомендацией для спортсменов, которые ежедневно занимаются. Суперкомпенсация гликогена является результатом отдыха, уменьшения числа или интенсивности тренинга и потребления углеводов. 

После тяжёлых тренировок питательные, богатые углеводами продукты, такие как картофель, макаронные изделия, зерновые, овощи и фрукты, являются важными источниками углеводов, которые могут быстро перевариваться и использоваться мышцами и печенью для восстановления гликогена. Потребление углеводов с высоким гликемическим индексом вскоре после тренировки может максимизировать и поддерживать скорость синтеза гликогена. 

Для тех, кто занимается регулярными физическими упражнениями, требуется восстановление запасов гликогена в мышцах и печени каждый день. Если запасы гликогена в мышцах достигают критически низкого уровня, силы быстро заканчиваются. 

Дополнительно: о том, в чём разница между сухой массой тела и мышечной массой можно прочитать в этой статье.

cmtscience.ru

Биохимические закономерности восстановления после мышечной работы

Тест 1. Субстраты, израсходованные во время работы, восстанавливаются в последовательности:

а) белки, жиры, креатинфосфат

б) жиры, креатинфосфат, белки

в) креатинфосфат, гликоген, жиры

г) гликоген, жиры, креатинфосфат

Тест 2. Максимальное время восстановления запасов гликогена мышцах после работы большого объема:

а) 20-30 с.

б) 4-5 мин.

в) 18-24 час.

г) 2-3 суток

Тест 3. Максимальное время устранения лактата после выполнения лактатных нагрузок:

а) 20-30 с

б) 4-5 мин.

в) 60-90 мин.

г) 2-3 суток

Тест 4. После тренировки быстрей всего восстанавливаются запасы:

а) белков

б) гликогена

в) жиров

г) креатинфосфата

Тест 5. Максимальное время восстановления запасов креатинфосфата в мышцах после выполнения алактатных нагрузок:

а) 20-30 с

б) 4-5 мин.

в) 18-24 час.

г) 2-3 суток

Тест 6. Отставленное восстановление направлено на восполнение в мышцах запасов:

а) гликогена

б) ионов кальция

в) креатинфосфата

г) миоглобина

Тест 7. Быстрое исчерпание запасов креатинфосфата в мышцах наблюдается при выполнении нагрузок в зоне:

а) максимальной мощности

б) субмаксимальной мощности

в) большой мощности

г) умеренной мощности

Тест 8. Максимальное время восстановления запасов белков в мышцах после продолжительной работы силового характера:

а) 4-5 мин.

б) 18-24 час.

в) 2-3 суток

г) 7-8 суток

Тест 9. Синтез гликогена ускоряет гормон:

а) адреналин

б) инсулин

в) кортикостерон

г) тестостерон

Тест 10. Синтез мышечных белков ускоряет гормон:

а) адреналин

б) кортикостерон

в) тестостерон

г) тироксин

Биохимические закономерности адаптации к мышечной работе

Тест 1. Биохимические сдвиги, лежащие в основе срочной адаптации, преимущественно вызываются гормоном:

а) адреналином

б) альдостероном

в) кальцитонином

г) тестостероном

Тест 2. Срочный тренировочный эффект – это биохимические сдвиги в организме, наблюдаемые:

а) во время работы и в течение 1-2 час. после ее завершения

б) через 5-6 час. после работы

в) через 2-3 суток после работы

г) после многих лет занятий спортом

Тест 3. Повышенное потребление кислорода во время мышечной работы является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 4. Кумулятивный тренировочный эффект – это биохимические сдвиги в организме, наблюдаемые:

а) во время работы и в течение 1-2 час. после ее завершения

б) через 5-6 час. после работы

в) через 2-3 суток после работы

г) после многих лет занятий спортом

Тест 5. Снижение рН крови, наблюдаемое во время мышечной работы, является

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 6. Отставленный тренировочный эффект – это биохимические сдвиги в организме, наблюдаемые:

а) во время работы и в течение 1-2 час. после ее завершения

б) через 2-3 час. после работы

в) через 2-3 суток после работы

г) после многих лет занятий спортом

Тест 7. Гипергликемия, возникающая во время мышечной работы является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 8. Биохимические сдвиги, лежащие в основе срочной адаптации, вызываются преимущественно:

а) андрогенами

б) катехоламинами

в) соматотропином

г) эстрогенами

Тест 9. Лактатный кислородный долг является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 10. Мышечная гипертрофия, развивающаяся после многолетних тренировок, является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 11. Алактатный кислородный долг является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 12. Суперкомпенсация, возникающая во время восстановления, является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 13. Гиперкетонемия, наблюдаемая во время мышечной работы, долг является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 14. Увеличение размера и количества митохондрий в мышечных клетках после

многолетних тренировок является:

а) кумулятивным тренировочным эффектом

б) отставленным тренировочным эффектом

в) срочным тренировочным эффектом

Тест 15. Срочным тренировочным эффектом является:

а) мышечная гипертрофия

б) предстартовая гипергликемия

в) смещение мышечного спектра в сторону преобладание красных волокон

г) суперкомпенсация гликогена

Тест 16. Кумулятивным тренировочным эффектом является:

а) лактатный кислородный долг

б) предстартовая гипергликемия

в) смещение мышечного спектра в сторону преобладания белых волокон

г) суперкомпенсация гликогена

studfile.net

БИОХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ВОССТАНОВЛЕНИЯ ПОСЛЕ МЫШЕЧНОЙ РАБОТЫ


⇐ ПредыдущаяСтр 7 из 12Следующая ⇒

Во время мышечной работы в организме возникают и нарастают разнообразные биохимические и функциональные сдвиги, приводящие в конечном счете к снижению физической работоспособности и разви­тию утомления. Устранение этих негативных изменений осуществляет­ся после работы, в процессе восстановления.

Восстановление является важнейшим периодом в подготовке спорт­смена, так как именно в это время в организме закладываются основы роста спортивной работоспособности, развития скоростно-силовых ка­честв и выносливости. Знание молекулярных механизмов восстановле­ния необходимо тренеру для эффективного управления учебно- тренировочным процессом.

Восстановление условно делится на две фазы: срочное и отставленное.

СРОЧНОЕ ВОССТАНОВЛЕНИЕ

На этом этапе устраняются продукты анаэробного обмена, главны­ми из которых являются креатин и лактат.

Креатин образуется и накапливается в мышечных клетках во время физических нагрузок за счет креатинфосфатной реакции: Креатинфосфат + АДФ —Креатин + АТФ

Эта реакция обратима. Во время отдыха она протекает в обратном направлении:

Креатин + АТФ —Креатинфосфат + АДФ

избыток

Обязательным условием превращения креатина в креатинфосфат является избыток АТФ, который создается в мышцах после работы, ко­гда уже нет больших энергозатрат на мышечную деятельность. Источ­ником АТФ при восстановлении является тканевое дыхание, проте­кающее с достаточно высокой скоростью и потребляющее значитель­ное количество кислорода. В качестве окисляемых субстратов чаще ис­пользуются жирные кислоты.

На устранение креатина требуется не более 5 мин. (Здесь и далее приводятся максимальные сроки восстановительных процессов после тяжелой работы большого объема. После выполнения физических на­грузок небольшого объема восстановление протекает значительно бы­стрее.) В течение этого времени наблюдается повышенное потребление кислорода, называемое алактатным кислородным долгом.

Алактатный кислородный долг характеризует вклад креатинфос- фатного пути ресинтеза АТФ в энергообеспечение выполненной физи­ческой нагрузки.

Наибольшие величины алактатного кислородного долга (8-10 л) на­блюдаются после выполнения физических нагрузок в зоне максималь­ной мощности.

Другой продукт анаэробного обмена - лактат - образуется и накап­ливается в результате функционирования гликолитического пути ре­синтеза АТФ. Устранение молочной кислоты происходит преимущест­венно во внутренних органах, так как она легко выходит из мышечных клеток в кровяное русло.

Лактат, поступающий из крови в миокард, подвергается аэроб­ному окислению и превращается в конечные продукты - С02 и Н20. Такое окисление требует кислорода и сопровождается выделением энергии, которая используется для обеспечения работы сердечной мышцы.

Значительная часть лактата из крови попадает в печень и превраща­ется в глюкозу. Этот процесс называется глкжонеогенезом. Синтез глю­козы из лактата требует энергии АТФ, источником которого служит тка­невое дыхание, протекающее с повышенной скоростью и потребляющее избыточное (по сравнению с покоем) количество кислорода.

Другая часть лактата из крови поступает в почки. В почках, так же как и в миокарде, лактат может окисляться с участием кислорода до уг­лекислого газа и воды, давая этому органу энергию. Часть лактата че­рез почки поступает в состав мочи.

Выделяется из организма молочная кислота также в составе пота. У спортсменов содержание лактата в поте может значительно превышать его уровень в крови. Поэтому использование после тренировки сауны или бани позволяет ускорить выделение из организма молочной кислоты.

Для устранения избытка лактата обычно требуется не более 1,5-2 ч. В это время наблюдается повышенное (по сравнению с дорабочим уровнем) потребление кислорода, поскольку все превращения лактата протекают с участием кислорода.

Повышенное потребление кислорода в ближайшие 1,5-2 ч после за­вершения мышечной работы, необходимое для устранения лактата, на­зывается лактатным кислородным долгом.

Лакгатный кислородный долг характеризует вклад гликолитического пути ресинтеза АТФ в энергообеспечение проделанной работы. Наи­большие величины лактатного кислородного долга (18-20 л) определя­ются после физической нагрузки в зоне субмаксимальной мощности.

Частично креатин и лактат могут устраняться и во время трениров­ки: при снижении интенсивности выполняемых физических упражне­ний, а также в промежутках отдыха. Такое восстановление называется текущим.

ОТСТАВЛЕННОЕ ВОССТАНОВЛЕНИЕ

В этот период в организме восполняются запасы химических соеди­нений и восстанавливаются внутриклеточные структуры, разрушенные или поврежденные во время мышечной работы. Основными биохими­ческими процессами, составляющими отставленное восстановление, являются синтезы гликогена, жиров и белков.

Синтез гликогена протекает в мышцах и в печени, причем в первую очередь накапливается мышечный гликоген. Синтезируется гликоген главным образом из глюкозы, поступающей в организм с пищей. Пре­дельное время восстановления в орг анизме запасов гликогена - 24—36 ч.

Синтез жиров осуществляется в жировой ткани. Вначале образуют­ся глицерин и жирные кислоты, затем они соединяются в молекулу жи­ра. Жир также образуется в стенке тонкой кишки путем ресинтеза из продуктов переваривания пищевого жира. С током лимфы, а затем кро­ви ресинтезированный жир поступает в жировую ткань. Для восполне­ния запасов жира необходимо не более 36^48 ч.

Синтез белков в основном идет в мышечной ткани. Часть амино­кислот (незаменимых) обязательно должна поступать с пищей. Макси­мальное время синтеза белков - 48-72 ч.

Отставленное восстановление также включает и восстановление (репарацию) поврежденных внутриклеточных структур. Это касается миофибрилл, митохондрий, различных клеточных мембран. По време­ни это самый длительный процесс; он требует до 72-96 ч.

Все биохимические процессы, составляющие отставленное восста­новление, протекают с потреблением энергии, источником которой яв­ляется АТФ, возникающий за счет тканевого дыхания. Поэтому для фа­зы отставленного восстановления характерно несколько повышенное потребление кислорода, но не такое выраженное, как при срочном вос­становлении.

Важнейшей особенностью отставленного восстановления является наличие суперкомпенсации (или сверхвосстановления). Суть этого явлёния заключается в том, что вещества, разрушенные при работе, во время восстановления синтезируются в больших концентрациях по сравнению с их дорабочим, исходным уровнем. На рис. 20 показана су­перкомпенсация гликогена - вещества, которое расщепляется практи­чески при любой работе.

Рис. 20. Суперкомпенсация гликогена при отставленном восстановлении

 

Как видно из рисунка, суперкомпенсация носит временный харак­тер, она обратима. Но если суперкомпенсация возникает часто (при ре­гулярных тренировках), то это ведет к постепенному росту исходного уровня данного вещества.

Основной причиной сверхвосстановления является повышенное со­держание в крови гормонов, влияющих на синтетические процессы (инсулин, тестостерон и др.). Время наступления суперкомпенсации существенно зависит от скорости распада веществ при работе: чем вы­ше скорость расщепления какого-либо вещества во время работы, тем быстрее происходит его синтез при восстановлении и раньше наступает суперкомпенсация.

Высота суперкомпенсации (степень превышения исходного уровня) определяется глубиной распада веществ при работе. Чем глубже распад вещества при работе (в разумных пределах, так как чрезмерный распад приводит к переутомлению!), тем выраженнее и выше суперкомпенсация. Эта особенность суперкомпенсации заставляет тренера применять на тре­нировках упражнения большой мощности и продолжительности, чтобы вызвать в организме спортсмена достаточно глубокий распад тех веществ, от содержания которых значительно зависит работоспособность.

Для спортсмена суперкомпенсация имеет исключительно важное значение. На высоте суперкомпенсации существенно возрастают все качества двигательной деятельности (сила, скорость, выносливость), что, несомненно, сказывается на спортивных результатах.

Обязательным условием полноценного восстановления является ка­чественное питание. Питание обеспечивает организм спортсмена ис­точниками энергии (все процессы синтеза требуют энергии!) и строи­тельным материалом для синтезов (аминокислоты, глюкоза, глицерин, жирные кислоты). Кроме этого, с пищей поступают витамины и мине­ральные вещества, потребность в которых после физической работы повышена.

Полезная информация

Гребцы высокой квалификации во время интенсивных тренировок расходуют в сутки 6000 ккал и более.

Для обеспечения полноценного восстановления пищевой рацион должен содержать 2-2,5 г белков, 8-10 г углеводов и 1,8-2 г жиров в рас­чете на 1 кг массы спортсмена.

ГЛАВА 19 БИОХИМИЧЕСКИЕ ОСНОВЫ ДВИГАТЕЛЬНЫХ КАЧЕСТВ СПОРТСМЕНА

К двигательным качествам (синонимы: двигательные способно­сти, двигательные возможности) обычно относят силу, быстроту, выносливость, координацию, гибкость, прыгучесть и т. п. Высокое развитие двигательных возможностей является непременным условием успешной технической и тактической подготовки, наличия морально- волевых качеств у спортсменов.

В данном разделе будут рассмотрены те качества двигательной дея­тельности, в развитии которых существенная роль принадлежит биохи­мическим механизмам. К таким двигательным качествам в первую оче­редь относятся сила, быстрота и выносливость. Поскольку в структур­но-морфологических и биоэнергетических основах силы и быстроты много общего, их обычно объединяют в скоростно-силовые качества.

БИОХИМИЧЕСКИЕ ОСНОВЫ СКОРОСТНО-СИЛОВЫХ КАЧЕСТВ

Быстроту (скоростные возможности) можно определить как ком­плекс функциональных свойств организма, непосредственно и пре­имущественно определяющих время двигательного действия. При оценке проявления быстроты учитывается скрытое время двигательной

реакции, скорость одиночного мышечного сокращения, частота мы­шечных сокращений.

Под силой мышц обычно понимается способность преодолевать внешнее сопротивление, либо противодействовать ему посредством мышечных напряжений.

Скоростно-силовые качества главным образом зависят от энерго­обеспечения работающих мышц и от их структурно-морфологических особенностей, в значительной мере предопределенных генетически.

Проявление силы и быстроты характерно для физических нагрузок, выполняемых в зоне максимальной и субмаксимальной мощности. Следовательно, в энергообеспечении скоростно-силовых качеств пре­имущественно участвуют анаэробные пути ресинтеза АТФ - креатин- фосфатный и гликолитический.

Быстрее всего развертывается ресинтез АТФ за счет креатинфос- фатной реакции. Она достигает своего максимума уже через 1-2 с по­сле начала работы. Максимальная мощность этого способа образования АТФ превышает скорость гликолитического и аэробного путей синтеза АТФ в 1,5 и 3 раза соответственно. Именно за счет креатинфосфатного пути ресинтеза АТФ мышечные нагрузки выполняются с самой боль­шой силой и скоростью. В свою очередь, величина максимальной ско­рости креатинфосфатной реакции зависит от содержания в мышечных клетках креатинфосфата и активности фермента креатинкиназы.

Увеличить запасы креатинфосфата и активность креатинкиназы возможно за счет использования физических упражнений, приводящих к быстрому исчерпанию в мышцах креатинфосфата.

Для этой цели используются кратковременные (не более 10 с) уп­ражнения, выполняемые с предельной мощностью (например, бег на 50-60 м, прыжки, заплыв на 10-15 м, упражнения на тренажерах, подъ­ем штанги и т. п.).

Хороший эффект дает применение интервального метода трениров­ки, состоящей из серий таких упражнений. Спортсмену предлагается серия из 4—5 упражнений максимальной мощности продолжительностью 8-10 с. Отдых между упражнениями в каждой серии равен 20-30 с. Про­должительность отдыха между сериями составляет 5-6 мин.

При выполнении каждого упражнения в мышцах происходит сни­жение запасов креатинфосфата. Во время отдыха между упражнениями (20-30 с) в мышцах включается гликолитический путь ресинтеза АТФ. Но поскольку в этот промежуток времени мышцы не функционируют, то образующиеся молекулы АТФ используются для частичного восста­новления запасов креатинфосфата. Достаточно продолжительное время отдыха между сериями позволяет почти полностью восполнить содер­жание креатинфосфата. Однако суперкомпенсация не развивается, так как отдых сменяется новой серией упражнений.

В результате этого в мышцах постепенно происходит исчерпание запасов креатинфосфата. Как только будет достигнута критическая ве­личина снижения концентрации креатинфосфата в работающих мыш­цах, сразу же уменьшится мощность выполняемых нагрузок. Обычно такое состояние достигается после 8-10 серий упражнений.

Во время отдыха после тренировки наблюдается выраженная супер­компенсация креатинфосфата. Поэтому многократное применение та­ких тренировок должно привести к повышению в мышцах запасов креатинфосфата, активности креатинкиназы и положительно сказаться на развитии скоростно-силовых качеств спортсмена.

Выполнение скоростных и силовых нагрузок в зоне субмаксималь­ной мощности (их продолжительность не более 5 мин) обеспечивается энергией в основном за счет гликолитического ресинтеза АТФ. Воз­можности этого способа получения АТФ обусловлены внутримышеч­ными запасами гликогена, активностью ферментов, участвующих в этом процессе, и резистентностью организма к молочной кислоте, об­разующейся из гликогена.

Поэтому для развития скоростно-силовых способностей, базирую­щихся на гликолитическом энергообеспечении, применяются трени­ровки, отвечающие следующим требованиям.

Во-первых, тренировка должна приводить к резкому снижению со­держания гликогена в мышцах с последующей его суперкомпенсацией.

Во-вторых, во время тренировки в мышцах и в крови должна накап­ливаться молочная кислота для последующего развития резистентности к ней организма.

Для этой цели могут быть использованы методы повторной и ин­тервальной работы. Применяемые упражнения должны вызывать по­вышение скорости гликолитического пути ресинтеза АТФ и приво­дить к усиленному образованию и накоплению лактата в работающих мышцах и его выходу в кровяное русло. Таким условиям соответству­ет выполнение предельных нагрузок продолжительностью в несколь­ко минут. В случае интервальной тренировки можно использовать се­рии из 4-5 таких упражнений. Отдых между упражнениями внутри серии - несколько минут. Хороший эффект дает постепенное умень­шение времени отдыха - например, с 3 до 1 мин. Каждое такое уп­ражнение вызывает распад внутримышечного гликогена и образова­ние молочной кислоты. Короткие промежутки отдыха между упраж­нениями (1-3 мин) недостаточны для устранения лактата. Отдых ме- ^ДУ сериями упражнений, составляющий 15-20 мин, также недоста­точен для полного устранения лактата, и поэтому упражнения в каж­дой последующей серии выполняются на фоне повышенной концен­трации в мышцах молочной кислоты, что способствует формирова­нию резистентности организма к повышенной кислотности.

Промежутки отдыха как между отдельными упражнениями, так и между сериями упражнений явно недостаточны для восстановления за­пасов гликогена, и вследствие этого в ходе тренировки в мышцах про­исходит постепенное уменьшение содержания гликогена до очень низ­ких величин, что является обязательным условием возникновения вы­раженной суперкомпенсации.

Структурно-морфологические особенности мышц, определяющие возможности проявления силы и быстроты, касаются строения как от­дельных мышечных волокон, так и мышцы в целом. Скоростно- силовые качества отдельного мышечного волокна зависят от количест­ва сократительных элементов - миофибрилл - и от развития сарко- плазматической сети, содержащей ионы кальция. Саркоплазматическая сеть также участвует в проведении нервного импульса внутри мышеч­ной клетки.

Содержание миофибрилл и развитие саркоплазматической сети не­одинаково в мышечных волокнах разных типов.

В зависимости от преобладания тех или иных способов образования АТФ, химического состава и микроскопического строения выделяют три основных типа мышечных волокон: тонические, фазические и пе­реходные. Эти типы волокон также различаются по своей возбудимо­сти, времени, скорости и силе сокращения, продолжительности функ­ционирования.

Тонические волокна (синонимы: красные, медленные, S-волокна) содержат относительно большое (в расчете на единицу массы или объ­ема мышечной клетки) количество митохондрий, в них много миогло- бина (поэтому они имеют красную окраску), но мало сократительных элементов - миофибрилл. Основной механизм ресинтеза АТФ в таких мышечных волокнах — аэробный. Поэтому они сокращаются медленно, развивают небольшую мощность, но зато могут сокращаться длитель­ное время.

Фазические волокна (синонимы: белые, быстрые, F-волокна) име­ют много миофибрилл, хорошо развитую саркоплазматическую сеть (много цистерн с ионами кальция!), к ним подходит много нервных окончаний. В них хорошо развиты коллагеновые волокна, что способ­ствует их быстрому расслаблению. В их саркоплазме значительны кон­центрации креатинфосфата и гликогена, высока активность креатинки­назы и ферментов гликолиза. Относительное количество митохондрий в белых волокнах (по сравнению с красными) значительно меньше, со­держание миоглобина в них низкое, поэтому они имеют бледную окрас­ку. Обеспечение энергией белых мышечных волокон осуществляется за счет креатинфосфатной реакции и гликолиза. Сочетание анаэробных путей ресинтеза АТФ с большим количеством миофибрилл позволяет волокнам данного типа развивать высокую скорость и силу сокраще­ния. Однако вследствие быстрого исчерпания запасов креатинфосфата и гликогена время работы этих волокон ограничено.

Переходные мышечные волокна по своему строению и свойствам занимают промежуточное положение между тоническими и фазиче- скими.

Даже из такого краткого перечисления различий между типами мышечных волокон следует, что для проявления силы и быстроты бо­лее предпочтительны белые (фазические) волокна и близкие к ним по строению переходные волокна. Поэтому более выраженными скорост- но-силовыми качествами, при прочих равных условиях, обладают те мышцы, в которых соотношение между мышечными волокнами сме­щено в сторону белых.

Соотношение между волокнами разных типов в скелетных мышцах неодинаковое. Так, мышцы предплечья, двуглавая мышца плеча, мыш­цы головы и другие содержат преимущественно фазические волокна. Мышцы туловища, прямая мышца живота, прямая мышца бедра в ос­новном содержат тонические волокна. Отсюда легко понять, почему указанные группы мышц существенно различаются по таким свойст­вам, как возбудимость, быстрота, сила, выносливость.

Соотношение между различными типами мышечных клеток у каждого человека генетически предопределено. Однако, используя физические нагрузки определенного характера, можно целенаправ­ленно вызывать изменение спектра мышечных волокон. За счет применения силовых упражнений происходит смещение этого спек­тра в сторону преобладания белых волокон, имеющих бблыпий диа­метр по сравнению с красными и переходными, что в итоге приво­дит к гипертрофии тренируемых мышц. Основной причиной гипер­трофии в этом случае является увеличение содержания в мышечных клетках сократительных элементов - миофибрилл. Поэтому мышеч­ная гипертрофия, вызываемая силовыми нагрузками, относится к миофибриллярному типу.

Физические нагрузки, применяемые для развития мышечной гипер­трофии миофибриллярного типа, на биохимическом уровне должны приводить к повреждению миофибрилл с последующей их суперком­пенсацией. С этой целью используются различные упражнения с отя­гощением*.

В качестве отягощения можно использовать массу тела самого спортсмена или его Партнера, штангу, гантели, гири, амортизаторы и тренажеры.

Для развитая силы часто используется метод повторных упражне­ний с напряжением 80-90% от максимальной силы. Наиболее эффек­тивное отягощение - 85% от максимальной силы. В этом случае число повторений «до отказа» обычно 7-8 (если спортсмен может выполнить до отказа большее или меньшее количество повторений, то следует со­ответственно увеличить или уменьшить нагрузку). Каждое упражнение (на определенные мышцы) выполняется сериями, количество которых колеблется от 5 до 10, с интервалом отдыха между ними в несколько минут. Скорость выполнения упражнений определяется целью трени­ровки. Для преимущественного увеличения мышечной массы (в пер­вую очередь силы!) упражнения выполняются в медленном или уме­ренном темпе. Для одновременного развития силы и быстроты упраж­нения проводятся во взрывчато-плавном режиме: начальная фаза дви­жения выполняется с большой скоростью, а завершается оно как можно более плавно. Поэтому в скоростно-силовых видах спортсмены в пери­од силовой подготовки должны отказаться от медленного выполнения силовых упражнений, так как в этом случае утрачивается способность мышц к быстрому сокращению.

Время восстановления после скоростно-силовой тренировки состав­ляет 2-3 дня. Однако, меняя мышечные группы, на которые направле­ны нагрузки, тренировочные занятия можно проводить через меньшие интервалы отдыха.

Обязательным условием эффективной силовой подготовки является полноценное, богатое белками питание, так как миофибриллы состоят исключительно из белков. Имеются данные о том, что развитию мы­шечной гипертрофии способствует ультрафиолетовое облучение. Предполагается, что под воздействием ультрафиолета увеличивается образование мужских половых гормонов, стимулирующих в организме синтез белков.

 

БИОХИМИЧЕСКИЕ ОСНОВЫ ВЫНОСЛИВОСТИ

Выносливость - важнейшее двигательное качество, от уровня раз­вития которого во многом зависят достижения атлета. Выносливость можно определить как время работы с заданной мощностью до появле­ния утомления.

В соответствии с характером выполняемой работы выделяют общую и специальную выносливость. Общая выносливость отражает способ­ность спортсмена выполнять неспецифические нагрузки. Такими на­грузками, например, для футболиста могут быть кросс, лыжные гонки, плавание, подвижные игры и т. п., а также выполнение физической ра­боты бытового характера (например, погрузочно-разгрузочные работы, копка огорода, рытье канавы, рубка дров и т. д.). Специальная вынос­ливость характеризует выполнение физических нагрузок, специфиче­ских для определенного вида спорта и требующих технической, такти­ческой и психологической подготовки спортсмена.

Первостепенное значение для проявления выносливости имеет уро­вень развития молекулярных механизмов образования АТФ - непо­средственного источника энергии для обеспечения мышечного сокра­щения и расслабления

В зависимости от способа энергообеспечения выполняемой работы выделяют алактатную, лактатную и аэробную выносливость. Неред­ко используются термины: алактатный, лактатный и аэробный ком­поненты выносливости.

Алактатная выносливость характеризуется наибольшим временем работы в зоне максимальной мощности. В зависимости от вида нагруз­ки можно выделить скоростную, скорости о-силовую и силовую алак­татную выносливость. Главным источником энергии при мышечной работе максимальной мощности является креатинфосфатная реакция. Поэтому развитие алактатной выносливости обусловлено внутримы­шечными запасами креатинфосфата. Как уже отмечалось, более бога­ты креатинфосфатом белые мышечные волокна. В связи с этим боль­шей алактатной выносливостью обладают мышцы с преобладанием бе­лых волокон. Содержание креатинфосфата в мышцах можно сущест­венно повысить, используя специальные упражнения. Принцип по­строения такой тренировки в интервальном режиме был описан выше, при рассмотрении энергообеспечения скоростно-силовых качеств.

Биохимическая оценка алактатной выносливости может быть дана путем определения суточного выделения с мочой креатинина. Этот по­казатель характеризует общие запасы в организме креатинфосфата. Рост алактатной выносливости обычно сопровождается увеличением суточного выделения креатинина. Другим критерием, характеризую­щим развитие алактатной выносливости, является алактатный кисло­родный долг, измеренный после завершения работы максимальной мощности.

Лактатная (гликолитическая) выносливость характеризует вы­полнение физических нагрузок в зоне субмаксимальной мощности. Ос­новным источником энергии при работе с такой мощностью служит анаэробный распад мышечного гликогена до молочной кислоты, назы­ваемый гликолизом. Возможности гликолитического способа получе­ния АТФ в значительной степени зависят от запасов мышечного глико­гена. Чем выше дорабочая концентрация гликогена в мышцах, тем дольше он будет использоваться в гликолизе. Отсюда следует, что мышцы с преобладанием белых, богатых креатинфосфатом и глико­геном волокон обладают также и выраженной лактатной выносливо­стью. Другим фактором, определяющим лактатную выносливость, яв­ляется резистентность мышечных клеток и всего организма в целом к возрастанию кислотности вследствие накопления лактата в мышцах и в крови.

Исходя из такой зависимости тренировки, направленные на разви­тие лактатной выносливости, строятся так, чтобы обеспечить выполне­ние двух задач. Во-первых, за счет выполняемых физических нагрузок в мышцах должно увеличиваться содержание гликогена. Во-вторых, тренировочные занятия должны привести к возникновению резистент­ности к накоплению лактата и повышению кислотности.

С этой целью применяются упражнения, вызывающие, с одной сто­роны, значительное исчерпание запасов мышечного гликогена, что яв­ляется необходимым условием для его последующей суперкомпенса­ции, а с другой - приводящие к образованию больших количеств мо­лочной кислоты. Таковыми являются физические нагрузки субмакси­мальной мощности, выполняемые в интервальном или повторном ре­жиме. Тренировка такого типа описана выше, при рассмотрении энер­гообеспечения скоростно-силовых качеств. В зависимости от характера применяемых нагрузок можно преимущественно развивать силовой или скоростной компонент лактатной выносливости.

Ведущим биохимическим показателем проявления лактатной вы­носливости при работе является накопление лактата в крови. Опреде­ление концентрации молочной кислоты в крови проводят после выпол­нения физической работы субмаксимальной мощности «до отказа». Высокий уровень концентрации молочной кислоты в крови свидетель­ствует об использовании для получения энергии во время работы больших количеств мышечного гликогена и развитии резистентности к возрастанию кислотности.

Такую же информацию можно получить, определяя в крови после субмаксимальных нагрузок изменение кислотно-щелочного баланса. В этом случае высокой лактатной выносливости соответствует значи­тельный сдвиг водородного показателя крови (рН) в кислую сторону. Еще одним показателем развития лактатной выносливости может слу­жить лактатный кислородный долг, измеренный после выполнения ра­боты субмаксимальной мощности «до отказа». Чем выше значение это­го показателя, тем больше вклад анаэробного распада гликогена в энер­гообеспечение проделанной работы. У спортсменов с хорошей физиче­ской подготовкой величины лактатного кислородного долга могут дос­тигать 18-20 л.

В спортивной практике очень часто алактатную и лактатную вынос­ливость объединяют в анаэробную.

Аэробная выносливость проявляется при выполнении продолжи­тельных упражнений умеренной мощности, которые главным образом обеспечиваются энергией за счет аэробного окисления (тканевого ды­хания). Вклад анаэробного энергообразования ограничивается лишь начальным периодом врабатывания. В спортивной литературе зачастую под термином «выносливость» подразумевается именно аэробная вы­носливость.

Аэробная выносливость определяется тремя главнейшими фактора­ми: запасами в организме доступных источников энергии (энергетиче­ских субстратов, т. е. тех веществ, которые могут подвергаться окисле­нию), доставкой кислорода в работающие мышцы и развитием в рабо­тающих мышцах митохондриального окисления.

В качестве источников энергии обычно используются углеводы, жирные кислоты, кетоновые тела (промежуточные продукты расщеп­ления жирных кислот) и аминокислоты. Вследствие большой продол­жительности аэробной работы эти энергетические субстраты достав­ляются в мышцы кровью, так как собственные энергетические ресурсы мышечных клеток расходуются в начале работы.

В обеспечении мышц источниками энергии существенная роль при­надлежит печени. Именно здесь во время выполнения длительных на­грузок происходит распад гликогена до глюкозы, которая затем с током крови поступает в скелетные мышцы и другие органы, участвующие в обеспечении мышечной деятельности (миокард, мозг, дыхательные мышцы). Другой процесс, протекающий в печени во время работы, окисление жирных кислот, сопровождающееся образованием кетоно­вых тел, которые также являются важными источниками энергии. Кро­ме того, в печени во время работы протекают и другие химические процессы, способствующие выполнению мышечной работы (глюконео- генез, синтез мочевины и пр.). В связи с такой важной ролью печени в обеспечении физической работы в спортивной практике применяют ге- патопротекторы - фармакологические средства, улучшающие функ­ционирование печени и ускоряющие в ней процессы восстановления.

Доставка кислорода в мышцы осуществляется кардиореспира- торной системой. Поэтому для проявления аэробной выносливости ис­ключительно важное значение имеет функциональное состояние сер­дечно-сосудистой и дыхательной систем, кислородная емкость крови, обусловленная количеством эритроцитов и содержанием в них гемо­глобина.

Развитие аэробной выносливости в значительной мере определяется также состоянием нервно-гормональной регуляции. Ведущую роль в этой регуляции выполняют надпочечники, выделяющие в кровь кате- холамины и глюкокортикоиды — гормоны, вызывающие перестройку организма, направленную на создание оптимальных условий для мы­шечной деятельности. Для проявления аэробной выносливости важна способность надпочечников в течение длительного времени поддержи­вать в кровяном русле повышенную концентрацию этих гормонов.

Внутримышечными факторами, ответственными за аэробную вы­носливость, являются размер и количество митохондрий - внутрикле­точных структур, в которых при участии кислорода происходит синтез АТФ, а также содержание миоглобина - мышечного белка, обеспечи­вающего внутри мышечных волокон перенос кислорода к митохондри­ям. Как уже отмечалось, более высоким содержанием митохондрий и миоглобина характеризуются красные (тонические) мышечные волок­на. Отсюда вытекает, что более высокая аэробная выносливость на­блюдается в мышцах с преобладанием красных волокон.

Аэробная выносливость в отличие от анаэробной менее специфич­на. Это обусловлено тем, что ее в большой мере лимитируют различ­ные внемышечные факторы: функциональное состояние кардиореспи- раторной системы, печени и нервно-гормональной регуляции, кисло­родная емкость крови, запасы в организме легкодоступных источников энергии. Поэтому спортсмен, имеющий хороший уровень аэробной выносливости, может проявить ее не только в том виде деятельности, где он прошел специализированную подготовку, но и в других видах аэробной работы. Например, квалифицированный футболист может показать хороший результат в беге на длинные дистанции.

Многофакторность аэробной выносливости требует применения комплекса разнообразных тренировочных средств, поскольку каждое конкретное занятие, вызывая достаточно разностороннее воздействие на организм, все же преимущественно совершенствует одну какую- либо сторону функциональных возможностей. В итоге, тренировки, на­правленные на развитие аэробной выносливости, должны обеспечить повышение работоспособности кардиореспираторной системы, способ­ствовать увеличению количества эритроцитов в крови и содержанию в них гемоглобина, росту концентрации миоглобина в мышечных клет­ках, лучшему обеспечению работающих органов энергетическими суб­стратами.

С этой целью применяются различные варианты повторной и ин­тервальной тренировки, а также непрерывная длительная работа рав­номерной или переменной мощности.

В качестве примера построения тренировочных занятий, направ­ленных на развитие аэробной выносливости, можно привести так назы­ваемую циркуляторную интервальную тренировку («интервальная тре­нировка по Фрайбургскому правилу»). Этот метод заключается в чере­довании кратковременных упражнений небольшой интенсивности и длительностью от 30 до 90 с с интервалами отдыха такой же продолжи­тельности. Такая работа стимулирует аэробное энергообеспечение мы­шечной деятельности и приводит к улучшению показателей кардио- респираторной системы.

Для повышения содержания в мышцах миоглобина может быть ис­пользована миоглобиновая интервальная тренировка. Спортсменам предлагаются очень короткие (не более 5-10 с) нагрузки средней ин­тенсивности, чередуемые с такими же короткими промежутками отды­ха. Выполняемые кратковременные нагрузки в основном обеспечива­ются кислородом, который депонирован в мышечных клетках в форме комплекса с миоглобином. Короткий отдых между упражнениями дос­таточен для восполнения запасов кислорода.

Для увеличения кислородной емкости крови, а также для повыше­ния концентрации миоглобина хороший эффект дают тренировки в ус­ловиях среднегорья.

Особенностью развития аэробной выносливости является возмож­ность использования неспецифических упражнений, и в первую оче­редь подвижных игр, что позволяет сделать тренировочный процесс разнообразным и интересным.

На практике для оценки аэробной выносливости часто используют­ся два показателя: максимальное потребление кислорода (МПК) и по­рог анаэробного обмена (ПАНО) (суть этих показателей изложена в главе 15 «Биоэнергетика мышечной деятельности»),

МПК является интегральным показателем, характеризующим в це­лом аэробное энергообразование в организме. Между значением МПК и аэробной выносливостью существует четкая корреляция: нагрузку одинаковой интенсивности дольше могут выполнять спортсмены с большей величиной МПК. Под влиянием тренировки МПК может воз­расти на 40% и более.

ПАНО также характеризует энергообеспечение мышечной работы за счет аэробного синтеза АТФ. При низких значениях ПАНО в орга­низме слабо развито аэробное энергообеспечение, и поэтому даже при выполнении нагрузок невысокой интенсивности организм вынужден включать анаэробный способ получения АТФ - гликолиз, ведущий, как Уже отмечалось, к образованию лактата и росту кислотности. В услови­ях повышенной кислотности снижается активность ферментов аэроб­ного синтеза АТФ, ухудшается доставка кислорода к митохондриям, Что в итоге сокращает продолжительность работы.


Рекомендуемые страницы:

lektsia.com

Последовательность восстановления энергетических запасов после мышечной работы

Биохимическая характеристика процессов восстановления при мышечной деятельности

 

Биохимические изменения в организме человека, вызванные выполнением избранного упражнения, не ограничиваются только временем работы, а распрос­траняются также на значительный период времени от­дыха после завершения работы. Такое биохимическое последействие упражнения обычно обозначается тер­мином «восстановление». В этот период осуществля­ется переход метаболизма от катаболических процес­сов, происходящих в работающих мышцах во время упражнения, к процессам анаболической направлен­ности, способствующим восстановлению разрушен­ных при работе клеточных структур, восполнению растраченных энергетических ресурсов и возобновле­нию нарушенного эндокринного и водно-электролит­ного равновесия организма.

В ходе процессов восстановления после мышеч­ной работы выделяются три фазы — срочное, от­ставленное и замедленное восстановление.

 Фаза срочного восстановления охватывает первые 30 мин после окончания упражнения и связана с восполне­нием внутримышечных ресурсов АТФ и креатинфосфата, а также с оплатой алактатного компонента кис­лородного долга.

В фазе отставленного восстанов­ления, продолжающейся от 0,5 до 6—12 ч после окончания упражнения, происходит восполнение растраченных углеводных и жировых резервов, воз­вращение к исходному состоянию водно-электролит­ного равновесия организма.

 

В фазе замедленного восстановления, которая может продолжаться до 2— 3 сут, усиливаются процессы протеиносинтеза и происходят формирование и закрепление в организ­ме адаптационных сдвигов, вызванных выполнением упражнения.

 

Каждая фаза восстановления имеет свои особенности в динамике происходящих мета­болических процессов.

Динамика биохимических процессов восстановления после мышечной работы

В период отдыха после работы биохимические изменения, произошедшие в мышцах и других органах во время выполнения упражнения, постепенно ликвидируются. Наиболее выраженные изменения обнаруживаются в сфе­ре энергетического обмена. В процессе работы в мышцах и других тканях снижается содержание энергетических субстратов (КрФ, гликогена, а при длительной работе — и липидов) и повышается содержание продуктов внутриклеточного метаболизма (АДФ, АМФ, Н3РО4, молочной кислоты, ке­тоновых тел и т. п.). Накопление продуктов "рабочего" метаболизма и уси­ление гормональной активности стимулируют окислительные процессы в тканях в период отдыха после работы, что способствует восстановлению внутримышечных запасов энергетических веществ, приводит в норму вод­но-электролитный баланс организма и обеспечивает индуктивный синтез белков в органах, подвергнутых воздействию нагрузки.

 

Как следует из табл. 31, процессы восстановления в период отдыха после мышечной работы протекают с различной скоростью и завершают­ся в разное время (явление гетерохронизма). Быстрее всего восстанавли­ваются резервы О2 и КрФ в работавших мышцах, затем — внутримышеч­ные запасы гликогена и гликогена печени и в последнюю очередь — ре­зервы жиров и разрушенные при работе белковые структуры.
 

Интенсивность протекания восстановительных процессов и сроки вос­полнения энергетических запасов организма зависят от интенсивности их расходования во время выполнения упражнения (правило Энгельгардта). Интенсификация процессов восстановления ^приводит к тому, что в определённыи момент отдыха после работы запасы энергетических веществ превышают их дорабочий уровень. Это явление получило название супер­компенсация, или сверхвосстановление.

Данное явление преходяще: после фазы значительного превышения исходного уровня содержание энергетических веществ постепенно воз­вращается к норме. Чем больше расход энергии при работе, тем быстрее происходит ресинтез энергетических веществ и тем значительнее превы­шение исходного уровня в фазе суперкомпенсации. Следует, однако, от­метить, что это правило применимо лишь в ограниченных пределах. При чрезмерно напряженной работе, связанной с очень большим расходом энергии и накоплением продуктов распада, скорость восстановительных процессов может снизиться, а фаза суперкомпенсации будет достигнута в более поздние сроки и выражена в меньшей степени.

Длительность фазы суперкомпенсации во времени зависит от общей продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме. После мощной кратковременной работы эта фаза наступает быстро и столь же быстро завершается. На­пример, при восстановлении внутримышечных запасов КрФ она обнару­живается уже на 3—4-й минуте отдыха и завершается через 1,5—2ч после завершения упражнения; восстановление АТФ происходит еще быстрее, поскольку осуществляется за счет энергии аэробного метабо­лизма.

При выполнении длительных упражнений, когда имеет место выраженный ацидоз из-за усиления гликолиза в работающих мышцах, суперкомпенсация содержания КрФ наступает только через 12 мин после окончания упражнения и продолжается в течение несколь­ких часов. Причины явления суперкомпенсации связаны с по­вышением концентрации гормонов анаболического действия в период отдыха после работы и индукцией ими синтеза белков-ферментов, кон­тролирующих процессы восстановления энергетических ресурсов в ске­летных мышцах.

Последовательность восстановления энергетических запасов после мышечной работы

 

Общие закономерности динамики биохимических процессов в период от­дыха после мышечной работы наиболее полно проявляют свое действие в ходе восстановления затраченных при работе энергетических субстратов, в частности при восстановлении внутримышечных запасов фосфагенов (АТФ + КрФ) и гликогена.

Между интенсивностью выполняе­мого упражнения и скоростью исчерпания внутримышечных запасов фос­фагенов существует линейная зависимость. Такая же зависимость связы­вает показатели интенсивности выполняемого упражнения со скоростью восполнения запасов фосфагенов после работы. Максимальные значения скорости восстановления внутримышечных запасов фосфагенов зафикси­рованы сразу после окончания упражнения. В момент окончания работы запасы КрФ в мышцах могут быть снижены на 70—90 % от исходного уровня. Темпы их возвра­щения к дорабочему уровню зависят от скорости аэробного ресинтеза АТФ, и этот процесс обычно разделяется на две фазы. Первая, быстро протекающая, фаза с константой "половинного времени" около 22 с. рас­пространяется на первые 3—4 мин восстановления и в ней ресинтезируется примерно 60 % использованного за время работы КрФ ("половинное время" — это время, за которое запасы КрФ в работающих мышцах уве­личиваются на 50 % их исходного уровня). Вторая медленно протекающая фаза восстановления внутримышечных запасов КрФ имеет константу по­ловинного времени более 3 мин. В обычных условиях при таких кинетичес­ких характеристиках полное восстановление запасов КрФ достигается на 5—8-й минутах с момента окончания упражнения.

Скорость восстановления запасов фосфагенов в мышцах обнаружива­ет тесную связь со скоростью оплаты быстрой фракции кислородного дол­га. Это означает, что чем большее количество имеющихся запасов КрФ бу­дет использовано при работе, тем больше кислорода необходимо доста­вить в работающие мышцы в период отдыха после работы, чтобы обес­печить восстановление запасов креатинфосфата. Большая часть АТФ, необходимой для обеспечения процесса восстановле­ния запасов КрФ в работающих мышцах, образуется за счет аэробного окислительного распада углеводов и жиров в цикле Кребса и в дыхатель­ной цепи митохондрий. Некоторое ее количество может быть получено от анаэробного гликолиза, еще протекающего параллельно с окислительными превращениями в работающих мышцах в первые минуты восстановления.

В отличие от процесса восполнения запасов фосфагенов в период от­дыха после работы, реставрация внутримышечных резервов гликогена, ис­пользованных во время упражнения, происходит в течение многих часов и даже дней. На процессы восстановления внутримышечных запасов углево­дов заметное влияние оказывают тип выполняемого упражнения, его ин­тенсивность и продолжительность, а также характер и объем углеводного питания в период отдыха после работы. В фазе срочного восстановления (в течение первого часа отдыха после окончания упражнения) степень восполнения внутримышечных углеводных ресурсов даже в условиях диеты с высоким содержанием углеводов отно­сительно невелика.

Достижение выраженной суперкомпенсации по содер­жанию гликогена в мышцах требует не менее 2—3 сут. Для ресинтеза гликогена в мышцах после работы могут использоваться как внутренние субстраты, в частности молочная кислота и глюкоза, образовавшаяся из веществ неуглеводной природы, так и дополнительные количества углево­дов, которые вводятся с пищей.

 

Устранение продуктов распада

studopedia.net

Время восстановления скелетных мышц после тренировки

Время восстановления мышц в бодибилдинге – это один из самых важных факторов роста мышц. Как известно, мышцы растут не во время тренировок , а во время отдыха и восстановления. Даже если вы придерживаетесь всех правил тренировок бодибилдинга, без достаточного времени для восстановления все ваши усилия будут потрачены впустую.

Каждый, кто начал заниматься бодибилдингом, рано или поздно столкнется с этим вопросом. Так какое же оптимальное время для восстановления мышц?

Рассмотрим вопросы: фазы восстановления скелетных мышц после тренировки, скорость и время их протекания , эффект увеличения восстановительной способности организма под влиянием физических упражнений , а точнее ошибочные мнения, и эффект влияния различных видов тренировок на время восстановления скелетных мышц.

Повышение способности к восстановлению.

Наше тело имеет ограниченную способность к восстановлению, но многие начинающие культуристы думают, что чем больше стаж тренировок , тем быстрее мышечное восстановление. Но это не так. Да, внутренние органы и железы, которые вырабатывают гормоны, начинают работать более эффективно и увеличивают скорость восстановления, но не на много. В противном случае профессиональные спортсмены не будут использовать допинг!

Еще один миф. Некоторые люди думают, что чем больше мышц, тем больше надо заниматься физическими упражнениями. Но и это не так. Позвольте объяснить почему. Большие и малые мышцы могут преодолеть определенный максимальный вес и в результате огромных механических напряжений и получают тренировочный стресс и повреждения миофибрилл пропорционально силе, которую могут развить мышцы. Например, представим что , начинающий бодибилдер делает жим лежа с весом 60 кг на десять повторений и повреждает 5% миофибрилл, а опытный бодибилдер жмет 150 кг на 10 повторений, и также получает микротравмы в размере 5%. В результате, и начинающий и опытный получает достаточный стимул для роста мышц.

Скорость восстановления мышц ограничена из-за ограничения скорости метаболических процессов в организме человека. Учитывая, что скорость обмена веществ у молодых людей примерно одинакова, то для восстановление после физических нагрузок и увеличения бицепса размером 56 см надо больше времени, чем требуется для бицепса размером 37 см. Более крупные мышцы тратят больше энергии, чем малые на одной и той же тренировке.

Существует еще одна ошибка. Например, новичок приходит в тренажерный зал, делает упражнения для каждой мышечной группы раз в неделю, для каждого упражнения два рабочих подхода и в первое время получает хороший результат. Затем, он увеличивает нагрузку на тренировках, чтобы стать сильнее и делает 4 сета в упражнении, но продолжает тренировать каждую мышцу раз в неделю. В результате, сила и мышечная масса не растет. Почему? Поскольку нагрузка на тренировках была увеличена, расходы энергии также увеличиваются, а время восстановления мышц остается прежним – одна неделя, которой уже не достаточно. Как решить проблему? Необходимо увеличить время отдыха, например, до двух недель. А что делать, пока мышцы восстанавливаются? Делать легкие тренировки, которые не энергоемкие и не провоцируют микротравмы мышц. Но , глядя на парней в тренажерках , до этого мало кто догадывается. Все качают и качают, больше и интенсивнее , и чаще! Но, не растет!

Именно по этой причине, многие обращаются к фармакологии, потому что не пытаются подумать и понять суть , не изучают информацию. Хотя правильной инфы сейчас не хватает. Даже в буржунете по запросу «muscle recovery time» на первом месте авторитетный сайт , который предлагает устаревшую инфу да еще и поверхностно.
Конечно, использование допинга может ускорить восстановление мышц, но это надо , я считаю, профессиональным бодибилдерам, которые зарабатывают этим деньги и имеют большие амбиции, и планы, и они понимают, что это чревато последствиями, по этому находятся под наблюдением врачей. Соглашаясь на использование допинга вы должны понимать, что это будет иметь последствия для вашего организма.

Еще раз скажу, что я не противник стероидов и другой фармподдержки, но вышесказанное надо понимать.

Влияние различных видов тренировок на восстановление мышц

Различные виды тренировок, требуют разное время для восстановления после. Например, аэробные упражнения вызывают значительные затраты энергии, но не вызывает повреждения большого количества миофибрилл. После аэробной тренировки восстанавливается главным образом мышечный гликоген. В зависимости от продолжительности тренировки, может потребоваться от одного дня до трех.

Анаэробные упражнения также расходуют энергию , но плюс к этому провоцируют микротравмы мышц. По этой причине, восстановление займет больше времени, потому что необходимо пополнить мышечный гликоген и восстановить поврежденные миофибриллы.

Восстановления мышц после физических нагрузок имеет следующие временные фазы:

1. Восстановление креатин фосфата.
2. Удаление продуктов распада (молочная кислота, ионы водорода)
3. Восстановление электролитного баланса и жидкости.
4. Восстановление мышечного гликогена.
5. Восстановление белковых структур.

Восстановление креатин фосфата

Креатин фосфат дает нам возможность преодолеть большие, но краткосрочные нагрузки или сделать мощное, но краткосрочное усилие. Например, быстрый бег и жим лежа с максимальными весами. Количество фосфокреатина быстро уменьшается. В течение 15-20 секунд упражнения, количество креатин фосфата падает почти до нуля, но поднимается очень быстро. В течение 2,5 минут после упражнения восстанавливается до первоначального уровня, а через 5 минут происходит суперкомпенсация.

Удаление продуктов распада (молочная кислота, ионы водорода)

В работающих мышцах из-за увеличения анаэробного гликолиза (силовые тренировки), образуется молочная кислота и ионы водорода, которые во время тренировки уменьшают производительность мышц. Устранение этих продуктов распада составляет около одного часа времени. Так-что миф о том, что мышцы болят на следующий день из-за молочной кислоты, которая накапливалась в мышцах на тренировке вчера – развеян.

Восстановление электролитного баланса и жидкости

В результате выполнения работ, связанных со значительным потоотделение, организм теряет минералы, затем следует период пополнения воды и минеральных солей, которые должны поступать с пищей.

Восстановление мышечного гликогена

Время восстановления мышечного гликогена после тренировки зависит от продолжительности и интенсивности тренировки. В среднем, после силовой тренировки восполнение занимает около двух дней, а на третий день происходит суперкомпенсация. Но если тренировка была очень длинная, например многочасовой бег, тогда может потребоваться более трех дней.

Восстановление белковых структур

Во время тренировки с отягощениями возникают огромные механические нагрузки . Миофибриллы , которые находятся в мышечных волокнах , подвергаются мощному разрывному воздействию. Поскольку миофибриллы все разной длинны, то во время упражнения самые короткие миофибриллы берут на себя нагрузку и разрываются.

После того, как миофибрилла разрушена, она должна быть полностью уничтожена, лизосомы начинают ее разбирать. Далее, за семь дней она успевает разрушиться в течении трех-четырех дней, а потом наполовину синтезироваться, так же 3-4 дня. Далее, на 90-95% мышцы восстанавливаются в течении пятнадцати дней, а вообще, полностью – коло 90 дней.
Дольше всех строится сухожильная часть или коллагеновая, (переходная из мышцы в сухожилие). Т.е.сама мышца уже восстановилась , а сухожильная часть еще продолжает восстанавливаться.

Из вышеизложенного следует, что развивающие, тяжелые тренировки на одну и ту же группу мышц следует проводить не чаще одного раза в две недели!

Помните! Только полное восстановление мышц! В противном случае, хороших и стабильных результатов в увеличении мышечной массы не видать. Очень частые тренировки могут принести больше вреда, чем пользы, могут привести к истощению организма. Получая адекватный отдых, мышцы будут радовать вас увеличением силы и массы.

fizcult.by

7 способов увеличить запасы гликогена в мышцах и не набрать жира

Дефицит гликогена означает малоинтенсивные тренировки и сложность с набором мышечной массы. Поэтому когда стоит задача построения мускулатуры, все усилия направлены на создание гликогеновых запасов.

Запасы гликогена в мышцах позволяют полностью усвоить аминокислоты, тренироваться тяжело и эффективно, а восстанавливаться быстро.  Гликоген – лучшее топливо для бодибилдера. Работа на 8-12 повторений в подходе, отказные сеты и все методы повышения интенсивности требуют, чтобы его депо были полны.

Многие спортсмены пренебрегают созданием гликогенового депо на массе, поскольку боятся поправиться, и не хотят использовать «грязный набор» с большим количеством калорий из простых углеводов. К счастью, накопления избыточного жира можно избежать. И вот как этого добиться.

Шесть приемов пищи

Если для сушки количество приемов пищи не играет такой роли, как создание дефицита, то для массы все иначе. Допустим, бодибилдеру нужно съесть 450 г углеводов в сутки. Если он разделит их на 3 приема, и не будет в этот день тренироваться, значительная часть гликогена запасется в жировых депо. Но стоит только устроить себе 6 приемов пищи, и большая часть запасется в печени и мышцах.

Прием работает, только если активно тренироваться, и сохранять подвижность. Есть люди, которые боятся и шага ступить на массе, они более склонны к набору жира. Поэтому просто питайтесь дробно.

К тому же, этот вариант организации рациона лучше для усвоения белка, витаминов, минералов, и других нутриентов.

Углеводы – «вокруг» тренировки

Углеводная еда до тренировки придаст энергии. Гликоген израсходуется на работу мышц и в жир откладываться будет нечему. После тренировки нужно пополнить запасы, чтобы восстановление было полным и анаболизму ничего не мешало.

Преимущества приема углеводов вокруг тренировки: более качественное восстановление и активизация метаболизма.

При отсутствии проблем, связанных с повышенным уровнем сахара крови можно рассмотреть прием предтренировочных комплексов с простыми углеводами. Обычно они содержат фруктозу, кофеин, креатин и карнитин. Эти комплексы не только улучшают производительность, но и помогают избавиться от низкой ментальной концентрации.

Если не удобно есть сразу после тренировки, поможет качественный гейнер с мальтодекстрином и протеином в составе. Такие продукты созданы для восполнения дефицита углеводов и помогают разгрузить ЖКТ человека. На массе они способствуют набору, но не вызывают ожирение, если калорийность рассчитана верно.

Учитывайте инсулинорезистентность

Инсулинорезистентность – это фактор, определяющий как тело переносит большое количество быстрых углеводов. Одни люди могут пить соки, есть фрукты и сладкое, и оставаться в бодрыми и относительно «сухими», другим даже не вовремя съеденный банан может пойти во вред. Если тело плохо переносит простые углеводы, стоит отказаться от:

  1. Рисовых хлебцев;
  2. Белого риса;
  3. Фруктов;
  4. Соков;
  5. Сладкого

Вместо этого ешьте бобовые, гречку, макароны из твердых сортов пшеницы, картошку и ямс. Эти источники углеводов богаты клетчаткой, и усваиваются медленней. Людям, чувствительным к инсулину стоит воздерживаться и от популярных предтренировочных добавок с фруктозой. Они должны избегать «здоровых» завтраков, состоящих из овсянки быстрой варки и фруктов, и отказываться от мюсли и смузи.

Если жир набирается, несмотря на отказ от простых углеводов, стоит внимательней пересчитать калорийность рациона. Возможно, она слишком высокая. Если цель – в наборе массы, это не означает, что нужно любой ценой повышать калорийность до предела. Более плавный набор – всегда более качественный.

Используйте углеводное чередование

Эта стратегия работает не только на сушке. Но на массе стоит чередовать немного иначе. «Приход» всегда остается в рамках физиологической нормы. Но:

  • В дни отдыха или легкой тренировки рук, атлет употребляет не более 4 г углеводов на килограмм массы тела.
  • В дни тяжелых тренировок, ему стоит повысить «приход» до 5 г углеводов на 1 кг массы тела.

Небольшое чередование поможет улучшить усвоение гликогена мышцами.

Принимайте добавки альфа-липоевой кислоты

Альфа-липоевая кислота – вещество, которое улучшает гликогеновую «вместительность» мышц. Она способствует улучшению усвоения углеводов, если принимать ее в количестве от 100 до 500 мг. Дозировки подбираются индивидуально, и зависят от мышечной массы атлета. Вещество продается в магазинах спортивного питания и входит в состав добавок для похудения с Л-карнитином из аптеки.

Дело в том, что альфа-липоевая кислота – мощный природный антиоксидант, она ускоряет все метаболические процессы. То, как сработает кислота, будет сильно зависеть от общего метаболического фона. Если атлет сидит «на сушке», его организм будет быстрее сжигать жир. Питается, чтобы нарастить мышечную массу? Продукт поможет мышцам «забирать» гликоген быстрее.

Добавьте немного уксусной кислоты в рацион

Поливать уксусом изделия из мяса и теста – не такая уж плохая привычка. Уксусная кислота – компонент натуральных соков, который позволяет улучшить секрецию ЖКТ. Используется не только в кулинарии, но и в производстве добавок. Странно, но современный мир пьет уксус для похудения, хотя, на деле, нужно было бы поступать совсем иначе.

Масса растет лучше, если атлет добавляет в рацион что-то повышающее аппетит и улучшающее усвоение продуктов.

Пить уксус ложками, как то рекомендуют народные рецепты, может быть небезопасным. А вот использовать салатные заправки с яблочным или виноградным уксусом – вполне здоровая привычка. Логично есть салат до основного приема пищи, который бы содержал большое количество углеводов.

Не забывайте про омега-3

Омега-3 жирные кислоты полезны не только для здоровья сердца и сосудов. Они способствуют правильному усвоению углеводов, позволяя нормализовать инсулиновый отклик. Мышцы просто «забирают» больше гликогена, если организм нормально реагирует на инсулин.

Отказ от полезных жиров в пользу одних только насыщенных на массе – одна из причин «грязного набора» за счет задержки жидкости и повышения процента жира. Поэтому стоит перестать смеяться над теми, кто делает для своих макарон соусы из авокадо, находясь на массонаборе. Здоровое питание имеет смысл, если подойти к процессу с умом.

Заключение

Да, это физиологично – прибавить некоторое количество жира, когда набираешь мышечную массу. Но стратегии увеличения количества гликогена в мышцах работают. Любой человек может убедиться в этом, если нормализует питание.

Что же с тренировками? Натуральному атлету имеет смысл вырабатывать свой гликоген, тренируясь в стиле, который ближе к силовому. Основа занятия – базовые упражнения в среднеповторном режиме, с прогрессией весов от тренировки к тренировке. Изолирующие упражнения можно делать с меньшим весом и в многоповторном режиме, но нужно следить за питанием. «Выжигание» гликогена до истощения мышц – это не то, чем следует заниматься на массонаборе. Такие стратегии тренинга оставьте на сушку.

Кроме того, избежать накопления жира поможет нормализация гормонального баланса. Для этого спортсменам рекомендуют придерживаться режима и высыпаться.

Обязательно прочитайте об этом

muskul.pro

Восстановление гликогена в мышцах - 115 фото питания после силовых тренировок

Синтез гликогена в организме – процесс довольно сложный. Недаром даже в медицинских ВУЗах на его изучение отводится достаточно много времени. Гликоген даёт энергию, что как раз и представляет интерес для спортсменов. Эта энергия наполняет мышечную ткань.

Синтезируется гликоген в печени. А распад гликогена происходит в мышцах. Его синтез усиливается при анаэробной нагрузке, например, после тренировки с весами в тренажёрке.

Кроме того, широко известно, что для повышения синтеза гликогена в мышцах требуются углеводы.

Содержимое обзора:

Различие между аэробными и анаэробными тренировками

При аэробных нагрузках усиливается приток кислорода в мышцы. Усиливаются процессы окисления. Примером аэробных нагрузок является бег на свежем воздухе. Работа в тренажёрке является ярким примером анаэробного процесса.

Кислорода здесь поступает минимум. Образование необходимой энергии происходит за счёт гликолиза – распада гликогена. Значит, и содержаться, и восстанавливаться до нужных пределов запасы гликогена должны быстро и эффективно.

Именно с этим связано небезосновательное мнение о необходимости употребления углеводов для эффективности тренировочного процесса.

Кумуляция гликогена

Гликоген в организме накапливается постепенно в течение суток. Принципиальным является не количество поглощённых углеводов, а равномерное употребление углеводов. Важно распределить в течение суток равными частями принимаемые углеводы.

После тренировки вообще нет смысла употреблять углеводы – на синтезе гликогена это никак не скажется. Необходимо понимать и использовать на практике этот принцип, потому что в большинстве своём бытует мнение, что эффективным является употребление углеводов после тренировки. Это ошибочное мнение!

Дело в том, что непосредственно после тренировочного процесса чувствительность к инсулину повышается и держится до суток.

Именно на этом основано построение тренировочного плана у диабетиков: им дают преимущественно анаэробные нагрузки в зале с использованием силовых тренажёров. А повышенная чувствительность к инсулину в данном случае играет на руку при борьбе с диабетом.

Как употреблять углеводы для синтеза гликогена

Спокойно распределите в течение суток объём углеводной пищи, употребляйте её вместе с животным белком. Нет никакой необходимости сразу после тренировки накидываться на углеводную пищу. Это не даст результата.

Единственное, что действительно требуется после тренировки – это восполнение водно-солевого баланса. Необходимо пить.

То есть основной принцип – распределение в сутках важнее количества!

Углеводно-белковые смеси

Отдельно стоит отметить существующее мнение о пользе употребления белково-углеводных коктейлей непосредственно после тренировки. Диетологи считают, что употребление углеводов в сочетании с белками усиливает синтез гликогена.

Однако, проведённые исследования указывают на обратный эффект: синтез гликогена после употребления белково-углеводных смесей после тренировочного процесса на 30(!) процентов ниже.

А мнение диетологов основано на банальной способности инсулина при большом всплеске (инсулиновый скачок) «утилизировать» любые питательные вещества.

Поэтому употребление белково-углеводных смесей в плане увеличения синтеза гликогена в печени и мышцах ничего на даст.

Резюмируя, попробуем сформулировать основные принципы восстановления гликогена:

  • Используйте анаэробные тренировки в своём арсенале.
  • При аэробной тренировке имеет смысл сразу же после тренировки употребить простые углеводы. При анаэробной же это смысла не имеет.
  • При анаэробных тренировках распределяйте равномерно в течение суток потребление углеводов.
  • Помните, что полное восстановление гликогена занимает около суток.
  • К серьёзным соревнованиям нужно основательно готовиться заранее: за двое суток до соревнований начинайте наполнять организм жидкостью, начинайте употребление углеводов, добавьте овощи и фрукты, исключите алкоголь.
  • При планировании долгосрочных соревнований имеет смысл провести углеводную загрузку. Она начинается примерно за неделю до планируемых соревнований. При коротких соревнования она смысла не имеет.

Фото способов восстановления гликогена в мышцах


Также рекомендуем просмотреть:

Пожалуйста, сделайте репост

fitnessadvice.ru

Как быстро восстановить гликоген в мышцах

Гликоген – это полисахарид, собранный из молекул глюкозы. Это наш запас энергии, который консервируется в мышцах и печени, чтобы в дальнейшем расходоваться при физических нагрузках. При интенсивных занятиях спортом расход гликогена увеличивается, и необходимо позаботиться о его восстановлении.

Основным критерием здесь является питание, важно следить за своим углеводным рационом в течение дня после тренировки и на следующий день, равномерно распределять порции углеводов. Не нужно доставлять организму стресс, вбрасывая в себя за один прием 500 грамм углеводов, а потом добавлять к очередному приему пищи всего 50 грамм. В таком стрессе организм не сможет полноценно восстановить гликоген, поэтому общий режим питания более важен, чем разовый прием углеводов.

На полное восстановление гликогенового депо может уйти от 24 до 48 часов

Бывают случаи, когда нужно быстрее помочь организму профессионального спортсмена после выступления или при подготовке к нему. Либо при жесткой и продолжительной низкоуглеводной диете, которая привела к полному истощению гликогенового депо.

Есть несколько способов ускорить восстановление гликогена:

  1. Сразу после тренировки или выступления в течение часа употребляйте углеводы и протеины. В этот момент организм лучше настроен на заполнение углеводного окна и восстановление исчерпанного гликогена.
  2. Выбирайте углеводы с высоким гликемическим индексом: они быстрее усвоятся и повысят уровень сахара в крови.
  3. Добавьте к простым углеводам кофеин. Исследования доказали, что это сочетание ускоряет восстановление гликогена.
  4. Употребляйте больше спортивных напитков и фруктовых соков сразу после тренировки.

Таким образом, ускорить восстановление гликогена в мышцах вполне реально. Но лучше делать это на регулярной основе, наладив свой режим питания.

Обязательно прочитайте об этом

muskul.pro

Энергетические процессы в мышце — SportWiki энциклопедия

На рисунке изображены преобладающие источники энергии во время выполнения нагрузки Источники энергии для образования АТФ

Естественно, что для совершения мышечного движения требуется энергия. В организме человека существуют разные источники энергии, которые последовательно включаются один за другим. Рассмотрим каждый из них.

АТФ[править | править код]

Универсальным источником энергии в живом организме является молекула АТФ, которая образуется в цитратном цикле Кребса. Под действием фермента АТФазы молекула АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ, при этом высвобождается энергия.

АТФ + h3O = АДФ+ h4PO4 + энергия

Головка миозинового мостика при контакте с актином обладает АТФазной активностью и соответственно возможностью расщеплять АТФ и получать энергию, необходимую для движения.

Количества АТФ, которое содержится в мышце, достаточно для выполнения движений в течение 2-5 первых секунд.

Креатинфосфат[править | править код]

Запас молекул АТФ в мышце ограничен, поэтому расход энергии при работе мышцы требует постоянного его восполнения, это происходит за счет креатинфосфата. Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.

АДФ + креатинфосфат = АТФ + креатин.

Эта реакция получила название – реакции Ломана. Именно поэтому креатин имеет большое значение в бодибилдинге.

Надо заметить, что креатин эффективен только при выполнении анаэробных (силовых) упражнений, так как креатинфосфата достаточно примерно на 2 минуты интенсивной работы, затем подключаются другие источники энергии. Соответственно, в лёгкой атлетике приём креатина как добавки для увеличения атлетических показателей малоэффективен.

Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других более мощных источников – анаэробного и затем аэробного гликолиза. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Энергетический метаболизм скелетных мышц[править | править код]

Алактатные механизмы[править | править код]

КФ обеспечивает запас энергии фосфата для ресинтеза АТФ из АДФ при наступлении сократительной деятельности (рис. 3):

КФ + АДФ Креатинкиназа К + АТФ (1)

В состоянии покоя мышечные волокна наращивают концентрацию КФ до пяти раз больше, чем АТФ. В начале сокращения, когда концентрация АТФ начинает падать, а АДФ повышаться вследствие ускорения разложения АТФ, массовая активность способствует образованию АТФ из КФ.

Хотя образование АТФ из КФ происходит быстро, требуя одной единственной ферментативной реакции (1), количество АТФ, которое может быть получено в результате этого процесса, ограничено начальной концентрацией КФ. Мышечные волокна также содержат миокиназу, которая катализирует образование одной молекулы АТФ и одной молекулы АМФ из двух молекул АДФ. АТФ и КФ, вместе взятые, могут обеспечить максимальную силу в течение 8—10 с. Таким образом, энергия, полученная от фосфагенной системы, используется для коротких всплесков максимальной мышечной активности, необходимых в легкой и тяжелой атлетике (забег на 100 м, толкание ядра или поднятие тяжестей).

Гликолиз[править | править код]

Хотя метаболизм по гликолитическому пути производит лишь небольшое количество АТФ из каждой усвоенной единицы глюкозы, он может обеспечить быстрый синтез большого количества АТФ при наличии достаточного количества ферментов и субстрата. Этот процесс может также происходить в отсутствие кислорода:

Глюкоза анаэробный быстрый гликолиз 2 АТФ + 2 лактата (2)

Глюкоза для гликолиза поступает либо из крови, либо из запасов гликогена. Когда исходным материалом выступает гликоген, из одной единицы потребленной глюкозы в результате фосфоролитического гликогенолиза образуется три молекулы АТФ. По мере того, как мышечная активность становится интенсивнее, для анаэробного расщепления гликогена мышц требуется все больше и больше АТФ, и, соответственно, увеличивается производство молочной кислоты. Анаэробный гликолиз может обеспечить энергию на 1,3-1,6 мин максимальной мышечной активности.

Образование молочной кислоты понижает уровень pH в мышечных волокнах. Это препятствует действию ферментов и вызывает боль, если удаление молочной кислоты происходит слишком медленно по сравнению с ее образованием.

Окислительное фосфорилирование[править | править код]

Рис. 3. Метаболические пути синтеза АТФ, используемые во время сокращения и расслабления мышц. В то время как анаэробное расщепление КФ и гликолиз происходят в цитозоле, окислительное фосфорилирование имеет место в митохондриях.Источник: Vander et al. (1990)
Основная статья: Окислительное фосфорилирование

При умеренном уровне физической нагрузки, например, при беге на 5000 м или марафоне, большая часть АТФ, используемого для сокращения мышц, образуется путем окислительного фосфорилирования. Окислительное фосфорилирование позволяет высвободить из глюкозы гораздо больше энергии по сравнению с отдельно взятым анаэробным гликолизом:

Глюкоза + O2-> 38 АТФ + СO2+ Н2O. (3)

Жиры катаболизируются только с помощью окислительных механизмов, при этом выделяется много энергии. Аминокислоты тоже могут быть метаболизированы подобным образом. Три метаболических пути образования АТФ для сокращения и расслабления мышц показаны на рис. 3.

В течение первых 5~10 мин умеренной физической нагрузки главным потребляемым «топливом» является собственный гликоген мышц. В течение следующих 30 мин доминирующими становятся переносимые кровью вещества; глюкоза крови и жирные кислоты вносят примерно одинаковый вклад в потребление мышцами кислорода. По истечении этого периода все более важную роль приобретают жирные кислоты. Важно подчеркнуть взаимодействие между анаэробными и аэробными механизмами в образовании АТФ во время физической нагрузки. Вклад анаэробного образования АТФ больше при краткосрочной нагрузке высокой интенсивности, в то время как при более продолжительных нагрузках низкой интенсивности преобладает аэробный метаболизм.

Восстановление и кислородная задолженность[править | править код]

После того как физическая нагрузка закончилась, поглощение кислорода все еще остается выше нормы (табл.). С недавнего времени для обозначения кислородной задолженности используется также термин «избыточное потребление кислорода после физической нагрузки». Сначала его уровень очень высок, пока тело восстанавливает запасы КФ и АТФ, возвращая тканям запасенный кислород, а затем в течение еще одного часа потребление идет на более низком уровне, пока удаляется молочная кислота. Поэтому ранние и последние фазы кислородной задолженности называют соответственно алактатной и лактатной кислородной задолженностью. Повышение температуры тела также говорит о более высокой скорости метаболизма и росте потребления кислорода.

Чем продолжительнее и интенсивнее физическая нагрузка, тем больше времени занимает восстановление. Например, на восстановление после полного истощения гликогена мышц зачастую требуется несколько дней, а не секунд, минут или часов, необходимых для восстановления запасов КФ и АТФ и удаления молочной кислоты. Физическая нагрузка большой интенсивности, вероятно, приводит к микротравмам мышечных волокон, и их восстановление занимает некоторое время.

Компоненты кислородной задолженности. После длительной, тяжелой физической нагрузки дыхание остается выше нормы для удовлетворения повышенной потребности в кислороде

Компонент

Пояснение

1

Восстановление запасов кислорода в тканях(около 1 л)

2

Восстановление уровней креатинфосфата и других богатых энергией фосфатов (около 1-1,5 л)

3

Удаление молочной кислоты путем глюконеогенеза и другими путями (до 12 л)

4

Стимуляция метаболизма вследствие повышения уровня адреналина (около 1 л)

5

Дополнительное потребление кислорода в дыхательных мышцах и сердце (около 0,5 л)

6

Общее усиление метаболизма вследствие более высокой температуры тела*

Q10 - повышение температуры на 10 °С может удвоить скорость метаболизма, если клетки могут справляться с такими изменениями температуры

sportwiki.to

Глава 18

  • Субстраты, израсходованные во время работы, восстанавливаются в последовательности: Креатинфосфат, гликоген, жиры

  • Максимальное время восстановления запасов гликогена в мышцах после работы большого объема: 18-24 ч

  • Наибольшая величина алактатного кислородного долга у хорошо тренированных спортсменов: 8-10 л

  • Максимальное время устранения лактата после выполнения лактатных нагрузок: 60-90 минут

  • После тренировки быстрее всего восстанавливаются запасы: Креатинфосфата

  • Синтез мышечных белков ускоряет гормон: Тестестерон

  • Отставленное восстановление направлено на восполнение в мышцах запасов: Гликогена

  • Алактатный кислородный долг – это повышенное потребление кислорода в течение 4-5 минут после выполнения нагрузки: Максимальной мощности

  • Максимальное время восстановления запасов белков в мыщцах после продолжительной работы силового характера: 2-3 суток

  • Наибольшая величина лактатного кислородного долга у хорошо тренированных спортсменов: 18-20 л.

  • Максимальное время восстановления запасов креатинфосфата в мышцах после выполнения алактатных нагрузок: 4-5 минут

  • Синтез гликогена ускоряет гормон: инсулин

  • Алактатный кислородный долг – это: Потребление кислорода в течении4-5 минут после выполнения алактатной нагрузки

  • Для определения лактатного кислородного долга измеряют потребление кислорода: В течении 60-90 мин после выполнения лактатной нагрузки

  • Биохимические сдвиги, лежащие в основе срочной адаптации, преимущественно вызываются гормоном: Адреналином

  • Срочный тренировочный эффект – это биохимические сдвиги в организме, наблюдаемые: Во время работы и в течение 1-2 ч после ее завершения

  • Повышенное потребление кислорода во время мышечной работы является: Срочным тренировочным эффектом

  • Кумулятивный тренировочный эффект – это биохимические сдвиги в организме, наблюдаемые: После многих лет занятий спортом

  • Снижение рН крови, наблюдаемое во время мышечной работы, является Срочным тренировочным эффектом.

  • Отставленный тренировочный эффект – это биохимические сдвиги в организме, наблюдаемые: Через 2-3 суток после работы

  • Гипергликемия, возникающая во время мышечной работы, является: Срочным тренировочным эффектом

  • Биохимические сдвиги, возникающие в организме во время срочной адаптации, вызываются преимущественно: Катехоламинами

  • Лактатный кислородный долг является: Срочным тренировочным эффектом

  • Мышечная гипертрофия, развивающаяся после многолетних тренировок, является: Кумулятивным тренировочным эффектом

  • Суперкомпенсация, возникающая во время мышечной работы, является: Отставленным тренировочным эффектом

  • Гиперкетонемия, возникающая во время мышечной работы, является: Срочным тренировочным эффектом

  • Увеличение размера и количества митохондрий в мышечных клетках после многолетних тренировок является: Кумулятивным тренировочным эффектом.

  • Фактором потенций, лимитирующим спортивную работоспособность, является: Возможность энергообеспечения мыщц.

  • Максимальное развитие аэробной работоспособности отмечается в возрасте: 20-25 лет

  • Фактором производительности, лимитирующим спортивную работоспособность, является: техника выполнения упражнений

  • Алактатная работоспособность в большей мере проявляется при выполнении нагрузок: Максимальной мощности

  • Кумулятивный эффект тренировки – это биохимические изменения в организме, которые: Отличают тренированный организм от не тренированного.

  • Алактатную работоспособность оценивают по выделению с мочой: Креатинина

  • Фактором производительности, лимитирующим спортивную работоспособность, является: Целеустремленность и сила воли

  • Срочный тренировочный эффект – это биохимические сдвиги, наблюдаемые в течение: работы и 1-2 ч после ее окончания

  • Лактатная работоспособность преимущественно проявляется при выполнении нагрузок Субмаксимальной мощности

  • Аэробную работоспособность за счет регулярных тренировок можно сохранить до: 40-45 лет.

  • Величина максимального потребления кислорода (МПК) зависит от: Размера и количества митохондрий в мышцах

  • Фактором потенций, лимитирующим спортивную работоспособность, является: Развитие мускулатуры.

  • Аэробную работоспособность оценивают по: Максимальному потреблению кислорода.

  • Фактором потенций, лимитирующим спортивную работоспособность, является: Развитие путей ресинтеза АТФ.

  • Максимальное развитие лактатной работоспособности отмечается в возрасте 20-22 г.

  • Фактором потенций, лимитирующим спортивную работоспособность, является: Резистентность организма к лактату

  • Максимальное развитие алактатной работоспособности отмечается в возрасте: 20-22 г

  • Лактатная работоспособность оценивается по: Лактатному кислородному долгу

  • Фактором производительности, лимитирующим спортивную работоспособность, является: Тактика ведения спортивной борьбы.

  • Аэробная выносливость преимущественно проявляется при выполнении нагрузок: Умеренной мощности

  • АТФазная активность миозина преимущественно обусловливает: Скоростные качества

  • Концентрация креатинфосфата в мышцах лимитирует: Алактатную работоспособность

  • studfile.net


    Смотрите также

    Календарь мероприятий

    Уважаемые родители и ребята, ждем вас на занятия со 2го сентября по расписанию. Расписание занятий Понедельник Среда Пятница Дети с 8-13 лет 16.50 - 18.15 16.50 - 18.15 16.50 -...
    Итоги турнира: 1е место - Кравченков Сергей (Алтай), 2е место - Спешков Станислав(СПБ), 3е место - Набугорнов Николай (Алтай). Победители были награждены...

    Новости

    Поздравляем наших участников соревнования по кикбоксингу "Открытый кубок ГБОУ ДОД ДЮСШ Выборжанин"! Юрий Кривец и Давид Горнасталев - 1 место,...