Межмолекулярная циклизация молочной кислоты


Межмолекулярная циклизация - Справочник химика 21

    Хлорирование полиизопренов в других растворителях изучено менее полно. Известно, что в бензоле реакция протекает, минуя стадию циклизации [108], а в смеси бензола с метилциклогекса-ном (4 6) хлорирование сопровождается сшиванием, которое очевидно связано с межмолекулярной циклизацией [107]. При до- [c.17]

    Цепной характер термоокислительного процесса обусловлен присутствием в полимере нитроксильных радикалов. При нагревании ПАО со скоростью нагрева 4.5 °/мин в макромолекулах ПАО образуются акрилонитрильные звенья XV, которые вступают в реакции внутри- или межмолекулярной циклизации по схеме 5 [33]. [c.152]


    Межмолекулярная циклизация кетонов под действием серы и аммиака с образованием замещенных Л -тиазолинов  [c.8]

    Первая, и несомненно самая большая, группа реакций образования циклов представляет собой внутримолекулярные варианты реакций, описанных в виде межмолекулярных. В этих процессах п-членный цикл образуется при циклизации цепи пз п атомов. Вторая группа реакций — межмолекулярные процессы, в которых образуются две связи между двумя различными молекулами. Такие процессы обычно называют реакциями циклоприсоединения. Самый известный пример — реакция Дильса — Альдера (Сайкс, с. 191). [Следует четко различать подобные действительно согласованные межмолекулярные процессы и большую группу межмолекулярных циклизаций, которые в действительности состоят пз двух отдельных стадий, вторая из которых и есть собственно циклообразование.] Третью группу реакций составляют электроциклические реакции, которые являются внутримолекулярными и по механизму близки к циклоприсоединению. [c.142]

    Одинаковый характер кривых, характеризующих изменение оптической плотности полосы поглощения ири 1660 см- и скорости сшивания полимерных цепей каучука от поглощенной дозы, указывает на существование взаимосвязи между процессами циклизации и сшивания каучука, т. е. иа протекание, наряду с внутримолекулярной, межмолекулярной циклизации полимерных цепей СКН-26. Эти процессы протекают с участием винильных и тронс-виниленовых двойных связей и нитрильных групп. Появление в спектрах ЯМР облученного СКН-26 линии с химическим сдвигом 6=1,3 м. д. подтверждает образование циклических структур. [c.161]

    Больщое влияние оказывают реакционноспособные функциональные группы полимера, склонные к внутри- и межмолекулярной циклизации и образованию межмолекулярных химических связей. Как правило, реакции протекают в обоих направлениях. Циклизация происходит с образованием наиболее устойчивых шестизвенных циклов. Иногда в результате циклизации получается лестничный полимер. Образование межмолекулярных связей влечет за собой превращение линейного полимера в сетчатый. Типичными полимерами, претерпевающими подобные превращения, могут служить ПВХ, ПВС, ПАН, ГЦ и др. [c.241]

    Разновидностью этого метода является межмолекулярная циклизация этил-(2-этоксиэтил)-фенилфосфина ири обработке бромистоводородной кислотой , в результате которой получается двубромистый  [c.661]


    Дегидратация может сопровождаться также межмолекулярной циклизацией [85] [c.186]

    Внутримолекулярная и межмолекулярная циклизация линейных полимеров с превращением их в циклические полимеры лестничного или паркетного типа. [c.177]

    Для А. и к., имеющих другие функциональные заместители, характерны внутри- и межмолекулярные циклизации с образованнем карбо- или гетероциклич. соединений напр., ацетали Р-кетоальдегндов тримеризуются в производные бензола  [c.224]

    Внутри- и межмолекулярные циклизации ацилпировиноградных кислот в синтезе кислородсодержащих гетероциклов [c.242]

    М — катион щелочного металла). Такой способ синтеза можно рассматривать как иллюстрацию метода г, в котором одно и то же соединение выступает одновременно в роли электрофила и нуклеофила. При межмолекулярной циклизации двух молекул одного и того же моногалондзамещенного диола образуются симметричные краун-эфиры с двумя ароматическими фрагментами в цикле [29] (данный подход — уравнение (8.1, (Э) — редко используют в препаративной практике). [c.168]

    Межмолекулярная циклизация. Если функциональные группы лолекуле бн- или гетерофункционального соединения находят-у соседних атомов углерода, то это не благоприятствует реак-ям внутримолекулярного элиминирования или внутримолеку-рной циклизации (поскольку должно приводить к напряженным поэтому термодинамически нестабильным трех- или четы- [c.241]

    В то же время диэтиловый эфир янтарной кислоты в условиях сложноэфирной конденсации не полимеризуется, а претерпевает межмолекулярную циклизацию с образованием дикетонодиэфира ряда циклогексана  [c.196]

    Еще одним важным представителем четвертичных оснований являются имидазо-лины. Их получают взаимодействием замещенного этиленамина с жирными кислотами. Эта реакция требует высоких температур (220-240 °С) и вакуума для удаления двух молей воды. В качестве жирных кислот используются олеиновая и жирные кислоты таллового масла, которые взаимодействуют с диэтилентриамином либо аминоэтил-этаноламином. Образование кольца протекает через образование амида и последующей енолизацией амидной группы и межмолекулярной циклизацией до имидазолина (уравн. 1.48). [c.58]

    Ступенчатый метод синтеза, показанный на схеме (25), является наиболее гибким и в общем дает наивысшие выходы продуктов циклизации, однако в связи с тем, что он требует существенно больше манипуляций, чем метод, представленный схемой (26), последний может иногда иметь предпочтение с практической точки зрения. Как видно, метод, представленный схемой (27), страдает тем недостатком, что галогенгидроксисоединение способно подвергаться скорее внутри-, чем межмолекулярной циклизации, и поэтому в основе большинства ранних работ по получению

www.chem21.info

Внутримолекулярная циклизация - Справочник химика 21

    Реакция дегидратации одноатомных спиртов под действием серной кислоты или ее солей является классическим методом получения простых эфиров. В образовании молекулы эфира участвуют две молекулы спирта. Реакция дегидратации гликолей в аналогичных условиях протекает в двух направлениях с образованием линейных полигликолей или с внутримолекулярной циклизацией (если возможно образование ненапряженных пяти- или шестичленных циклов). Этиленгликоль под действием серной кислоты образует полигликоли или шестичленный циклический эфир 1,4-диоксан  [c.213]
    Важнейшей отличительной особенностью полибутадиенов, образующихся при катионной полимеризации, является их низкая непредельность (30—70% от теоретической), наблюдаемая уже в начальной стадии процесса. Специфический характер вторичных реакций при катионной полимеризации объясняется тем, что активность внутренних двойных связен полимерной цепи по отношению к реакционному центру соизмерима с активностью мономера. На любой стадии процесса полимеризации протекает реакция внутримолекулярной циклизации, сопровождающаяся падением непре-дельности полимера [13]  [c.178]

    РЕАКЦИИ ВНУТРИМОЛЕКУЛЯРНОЙ ЦИКЛИЗАЦИИ [c.174]

    Такой процесс циклизации затрудняется с увеличением расстояния между функциональными группами, в результате чего образуются малоустойчивые циклы. Таким образом, способность бифункциональных мономеров к циклизации зависит от напряженности образующегося цикла, что, в свою очередь, определяется расстоянием между функциональными группами. Кроме того, на процесс поликонденсации и иа реакционную способность мономеров влияет также и расположение в них функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в пара-положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в орго-положении. Оказывают влияние и стерические факторы. Так, если в орго-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в орго-фенилендиамине способствует образованию циклических продуктов, что приводит [c.402]

    Внутримолекулярные реакции между функциональными группами одной и той же макромолекулы (внутримолекулярная циклизация).  [c.201]

    Наибольшей реакционной способностью среди галогенов обладает фтор, который не исполь-зуется для определения непредельности вследствие его чрезвычайно высокой активности. Хлор, несмотря на высокую кислотность, также ие используют, так как ири хлорировании наряду с реакцией ирисоединения всегда глубоко протекают побочные реакции замещения, внутримолекулярной циклизации, деструкции, сшивания макромолекул. Бром легко присоединяется к непредельным соединениям, причем реакция может протекать и по радикальному механизму. В растворе эти процессы могут осуществляться одновременно, и в обоих случаях образуется один и тот же дибромид. При действии брома, как и в случае хлора, наблюдается интенсивный процесс замещения. Иод, как правило, применяют 13 присутствии катализаторов, которыми служат соединения двухвалентной ртути. Действие катализатора заключается в иоляризацни молекулы ио.та и брома и увеличении, таким образом, скорости ирисоедниепия галогена. [c.69]


    На основании изучения механизма циклизации изопреноид-ных соединений в настоящее время предложен следующий механизм внутримолекулярной циклизации каучука (на примере полиизопрена) [1]  [c.59]

    Аналогичные синтезы являются весьма удобным методом получения жирноароматических спиртов. При некотором ужесточении условий в реакцию вступает и вторая группа, атакуя вторую молекулу ароматического соединения или приводя к продуктам внутримолекулярной циклизации. Высокая активность функциональных групп при вторичных и третичных атомах углерода затрудняет получение индивидуальных соединений даже при мягких условиях. Применение дополнительных факторов (снижение температуры и активности катализатора, использование растворителей и т. д.) позволяет изменять соотношение реагирующих продуктов в широком диапазоне  [c.135]

    Реакции внутримолекулярной циклизации могут протекать также с участием низкомолекулярного реагента. Так, при нагревании поливинилхлорида в присутствии цинка происходит образование трехчленных циклов в основной цепи  [c.60]

    Дегидратация вторичных спиртов, легко протекающая на глинах, приводит к появлению серии триенов, способных к внутримолекулярной циклизации с образованием ароматического кольца Г. Частично при этом происходит отщепление фрагментов алифатической цепи. Характерно, что в нефтях углеводороды подобной структуры найдены только состава С35, т. е. найдены только те углеводороды, которые могут быть образованы из бактериогопана. [c.174]

    Проведено окислительное сочетание производных пиридо[1,2-а] бензимидазола (продуктов взаимодействия 1,5-дикетонов с о-фенилендиамином) с ароматическими бинуклеофилами внутримолекулярная циклизация полученных продуктов приводит к соединениям, содержащим структуры феназина, феноксазина и фенотиазина  [c.95]

    Внутримолекулярные реакции можно разделить на две группы реакции, приводящие к образованию макромолекул с системой ненасыщенных связей, и реакции внутримолекулярной циклизации. [c.59]

    Рассмотренный механизм внутримолекулярной циклизации, приводящий к иным формам строения макромолекулы, объяс- [c.59]

    В процессе окисления происходит циклизация ПАН. Окраска ПАН постепенно меняется, приобретая желтый, красноватый, коричневый и, наконец, сине-черный цвет. По мнению некоторых авторов, при термической обработке ПАН-волокна в прис

www.chem21.info

Гидроксикислоты (г/к)

Функц. группы Г/К : ОН и СООН (старшая)

Классификация

1)   по у/в скелету:

алифат-кие;  аромат-кие, циклические

2) по количеству СООН –групп:

моно-, ди- или трикарбоновые к-ты;

3) по количества ОН-групп: ди-, три- , тетра и т. д. гидроксикислоты.

По взаимному расположению функциональных групп различают α-, β-, γ-, δ-гидроксикислоты и т. д..Специфические свойства гидроксикислот обусловлены принадлежностью этих соединений одновременно к спиртам и карбоновым кислотам и во многом зависят от взаимного расположения

АМИНОКИСЛОТЫ, органические к-ты, содержащие одну или несколько аминогрупп. В зависимости от природы кислотной ф-ции аминокислоты подразделяют на аминокарбоновые, например, аминосульфоновые, например, аминофосфоновые, например, и аминоарсиновые, например. Согласно правилам ИЮПАК, название аминокислоты производят от названия соответствующей к-ты; взаимное расположение в углеродной цепи карбоксильной и аминной групп обозначают обычно цифрами, в нек-рых случаях - греч. буквами. Однако, как правило, пользуются тривиальными названиями аминокислот.Структура и физические свойства. По физ. и ряду хим. свойств аминокислоты резко отличаются от соответствующих к-т и оснований . Они лучше раств. в воде, чем в орг. р-рителях; хорошо кристаллизуются; имеют высокую плотность и исключительно высокие т-ры плавления (часто разложения). Эти св-ва указывают на взаимод. аминных и кислотных групп, вследствие чего аминокислоты в твердом состоянии и в р-ре (в широком интервале рН) находятся в цвиттер-ионной форме. функциональных групп.

При нагревании a-аминокислот в результате межмолекулярной дегидратации образуются циклические амиды - дикетопиперазины:

При близком расположении функциональных групп реакция дегидратации проходит межмолекулярно, при этом α-гидроксикислоты образуют циклические сложные эфиры — лактиды:

β-Гидрокси- и β-аминокислоты. Характерное общее свойство этих гетерофункциональных кислот заключается в способности к элиминированию молекулы воды или соответственно аммиака с образованием α,β-ненасыщенных кислот.

Реакции элиминирования протекают в мягких условиях. Это объясняется высокой протонной подвижностью α-атома водорода, обусловленной электронным влиянием двух электроноакцепторных

групп (Х и СООН).

32.γ-гидрокси- и γ-аминокислоты. Реакции циклизации. Лактоны, лактамы. Лактим-лактамная таутомерия.

γ-Гидрокси- и γ-аминокислоты. Эти кислоты, как и кислоты с δ-расположением функциональных групп, при нагревании претерпевают внутримолекулярную циклизацию. Из гидроксикислот при этом образуются циклические сложные эфиры - лактоны, из аминокислот - циклические амиды - лактамы. Лактоны легко образуются уже при незначительном нагревании, а также в кислой среде.

Принципиально так же происходит внутримолекулярное взаимодействие амино- и карбоксильной групп в γ- и δ-аминокислотах.

Лактоны и лактамы, будучи соответственно сложными эфирами и амидами, гидролизуются в кислой или щелочной среде.

Лактим-лактамная таутомерия

Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C—ОН.

Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру — пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает.

33.Двухосновные (яблочная, винные), трехосновные (лимонная) гидроксикислоты. Доказательство наличия 2-х карбоксильных групп в винной кислоте. Образование лимонной кислоты в результате альдольного присоединения. Разложение лимонной кислоты по типу α-гидроксикарбоновых кислот.

яблочная кислота(оксиянтарная кислота, гидроксибутандиовая кислота) НООС-СН(ОН)-СН2-СООН — двухосновнаяоксикарбоновая кислота. Бесцветные гигроскопичные кристаллы, хорошо растворимые в воде иэтиловом спирте.

Винная кислота является органическим соединением – двухосновной оксикислотой.В естественном виде винная кислота встречается в винограде Винная кислота (иначе – диоксиянтарная или тартаровая кислота) представляет собой кристаллы без запаха и цвета, которые имеют очень кислый вкус. Как пищевая добавка винная кислота имеет название Е334. Винная кислота в естественном виде встречается во многих фруктах. Особенно ее много в винограде и цитрусовых. В некоторых продуктах она сочетается с магнием, кальцием или калием. Первоначально винную кислоту получали как побочный продукт винодельческой промышленности. Она в основном использовалась для предотвращения роста бактерий в вине в чанах и бочках.Лимонная кислота— одноводный кристаллогидрат. Хорошо растворима в воде: 133 грамма в 100 граммах воды при 20°С. Также растворяется в спирте, диэтиловом эфире. При нагревании до 175°С лимонная кислота переходит в аконитовую (А) и ацетондикарбоновую (Б) кислоты, выше 175°С образует итаконовую кислоту.

Образование калиевых солей, обладающих различными физическими свойствами, является доказательством наличия двух карбоксильных групп в винной кислоте.

разложение лимонной кислоты при нагревании в присутствии серной кислоты происходит по типу разложения а-гидроскикарбоновых кислот. Образующаяся при этом муравьиная и ацетодикарбоновая кислоты в результате последующих превращений дают конечные продукты- воду, оксид углерода, диоксид углерода и ацетон.

studfile.net

Оксокислоты — Википедия

Материал из Википедии — свободной энциклопедии

Оксокислоты — гетерофункциональные соединения, содержащие карбоксильную и карбонильную (альдегидную или кетонную) группы. В зависимости от взаимного расположения этих групп различают α-, β-, γ- и т. д. оксокарбоновые кислоты.

Для получения оксокислот применимы обычные методы введения карбоксильной (-СООН) и оксогрупп (=O). Специфический метод синтеза β-кетокислот — сложноэфирная конденсация.

Оксокислоты вступают в реакции, характерные для карбоксильной и карбонильной групп. Отличительная черта оксокислот — лёгкость, с которой протекает их декарбоксилирование.

α-оксокислоты легко отщепляют СO2 и СО при нагревании в присутствии серной кислоты.

β-оксокислоты неустойчивы и самопроизвольно декарбоксилируются с образованием кетонов.

CH3COCH2COOH → CH3COCH3 + CO2

Основная статья: Таутомерия

β-оксокислоты и их эфиры обладают специфическими свойствами, которые связаны с их повышенной СН-кислотностью. Повышенная подвижность протонов метиленовой группы обусловлена электроноакцепторным влиянием двух карбонильных групп.

β-оксокислоты существуют в виде двух таутомерных форм: кетонной и енольной, причем содержание енольной формы в равновесной смеси значительное. Енольные формы дополнительно стабилизируются за счет наличия в них системы сопряженных p -связей и внутримолекулярной водородной связи.

Глиоксиловая кислота: содержится в незрелых фруктах. Является промежуточным продуктом в ферментативном глиоксилатном цикле.

Пировиноградная кислота (соли пируваты): центральное соединение в цикле трикарбоновых кислот. Промежуточный продукт при молочнокислом и спиртовом брожении углеводов.

Ацетоуксусная кислота: образуется в процессе метаболизма высших жирных кислот и как продукт окисления бета-гидроксимасляной кислоты накапливается в организме больных диабетом.

Щавелевоуксусная кислота: промежуточное соединение в цикл трикарбоновых кислот. Образуется при окислении яблочной кислоты и превращается далее в лимонную. При переаминировании даёт аспарагиновую кислоту.

α-Кетоглутаровая кислота: участвует в цикле трикарбоновых кислот и является предшественником важных аминокислоты — глутаминовой и γ-аминомасляной.

  • Тюкавкина Н.A «Биоорганическая химия»,M 2004.

ru.wikipedia.org

Окисление межмолекулярные - Справочник химика 21

    Все окислительно-восстановительные реакции можно разделить на три группы 1) реакции межмолекулярного окисления — восстановления, 2) реакции диспропорционирования (самоокисления — самовосстановления) и 3) реакции внутримолекулярного окисления — восстановления. [c.108]

    Межмолекулярные (межатомные) окислительно-восстановительные реакции характеризуются тем, что атомы, изменяющие свои степени окисления, находятся в разных по своей химической природе атомных или молекулярных частицах. Другими словами, одни вещества (простые или сложные), вступающие в химические реакции, являются окислителями, а другие — восстановителями. Межмолекулярные процессы составляют наиболее обширную группу окислительно-восстановительных реакций. Примерами могут служить реакции с участием простых и сложных веществ, а также различных атомных и молекулярных частиц (радикалов, ионов и ион-радикалов)  [c.77]


    Сорбционные методы концентрирования основаны иа использовании процесса сорбции готовым сорбентом. По механизму сорбции различают физическую адсорбцию (молекулярную), основанную на действии межмолекулярных сил между сорбентом и сорбируемым веществом, и хемосорбцию (ионный обмен, комплексообразование, окисление-восстановление и др.), основанную на протекании химических реакций между сорбентом и сорбируемым веществом. Сорбцию можно осуществлять в статическом, динамическом и хроматографическом вариантах. В этом разделе рассмотрен статический вариант сорбции, т. е. сорбция навеской сорбента в замкнутом объеме раствора или газа. Статический метод обычно используют при большой избирательности сорбента к извлекаемым компонентам. Извлекать можно микрокомпоненты и матрицу. Если сорбируют микрокомпоненты, то для конечного определения их либо десорбируют, либо озоляют сорбент. [c.316]

    Типы окислительно-восстановительных реакций. Различают три типа реакций окисления — восстановления межмолекулярные, внутримолекулярные и самоокисления — самовосстановления. [c.247]

    Продукты глубокого окисления образуют (за счет ассоциации, межмолекулярного взаимодействия, адсорбции на поверхности твердых микрозагрязнений, всегда присутствующих в топливе) коллоидные частицы и частицы суспензии, которые в дальнейшем, укрупняясь и подвергаясь химическим взаимодействиям, приводят к образованию твердых осадков и отложений. [c.52]

    Особенно легко такая изомеризация протекает, если в р-поло-жении имеется третичная С—Н-связь. Отношение констант скоростей внутримолекулярного и межмолекулярного отрыва Н при окислении 2,4-диметилпентана, согласно [41], равно кр jkp = 3,2-102 exp (—4,2/RT) моль/л = 80 моль/л при 100 °С [c.30]

    В межмолекулярных окислительно-восстановительных реакциях изменяют степень окисления элементы разных молекул. Легко заметить, что все вышеприведенные реакции относятся к этому типу реакций. [c.247]

    Межмолекулярные реакции. Они протекают с изменением степени окисления атомов в разных молекулах. Эти процессы составляют наиболее обширную группу окислитель-но-восстановительных реакций. Вот несколько примеров Синтез  [c.90]


    Иодозобензол, который может быть получен также путем окисления иодбензола озоном или надуксусной кислотой, представляет собой желтое аморфное соединение, взрывающее при нагревании до 210°. Уже при обычной температуре он медленно, а ири нагреванни быстро превращается в смесь подобен зол а и иодбензола следовательно, в данном случае происходит межмолекулярное перемещение кислорода, т. е. диспропорционирование  [c.515]

    Марков Ю.А. Обнаружение и влияние межмолекулярного взаимодействия углеводородов сераорганических соединений на окисление нефтепродуктов Автореф. дис.. .. канд. хим. наук. - М., 1971.- 19 с. [c.198]

    Различают реакции с изменением и без изменения степеней окисления элементов. Понятно, что такое деление условно и основано на формальном признаке — возможности количественного определения условной величины — степени (состояния) окисления элемента. Неизменность степени окисления элементов при химических превращениях вовсе не означает, что не происходит перестройки электронных структур взаимодействующих атомов, ионов и молекул. Конечно, и в этом случае протекание реакции обязательно связано с ббльшим или меньшим изменением характера межатомных, межионных и межмолекулярных связей, а следовательно, и эффективных зарядов атомов. [c.159]

    Следом за ней может идти стадия межмолекулярного диспропорционирования, приводящая к накоплению окисленных и восстановленных молекул, или все ограничится перегруппировками внутри одной молекулы. [c.198]

    По данным ИК-спектроскопии, в начальной станции процесса вследствие дегидрирования образуются двойные углерод-углеродные связи (пик 1630 см ). Подъему кривой напряжений соответствует циклизация нитрильных групп, в том числе межмолекулярных, и образование сшивок между молекулярными пенями за счет возникновения азометиновых мостиков. С увеличением начального напряжения или температуры стабилизации предельное напряжение (описанных реакций. Предполагается, что продуктом, который инициирует этот процесс, является /3-кетонитрил.Он образуется при окислении ПАН. При дальнейшем [c.582]

    К межмолекулярным реакциям относится тип наиболее многочисленных реакций, протекающих с изменением степени окисления атомов элементов в разных веществах. Например  [c.144]

    Типы окислительно-восстановительных реакций. Наиболее обширную группу окислительно-восстановительных реакций составляют межмолекулярные реакции, протекающие с изменением степени окисления атомов в разных молекулах. Вот несколько примеров  [c.221]

    Из этих данных ВИДНО, что в

www.chem21.info

Молочная кислота в цикле Кребса

    Цикл отдает по два электрона в цепь переносчиков на уровнях изолимонной кислоты, кетоглутаровой кислоты, янтарной и яблочной кислот. При превращении пировиноградной кислоты в молочную также отщепляются два электрона. В итоге от одной молекулы молочной кислоты получается 12 электронов, входящих в цепь цитохромов. Энергия этих электронов и остается частично в 18 молекулах АТФ, порождаемых работой цикла Кребса. Окисление одной молекулы глюкозы (шестиуглеррдного соединения) дает соответственно 36 молекул АТФ, аккумулировавщих в себе эту энергию, равную избытку энергии системы глюкоза — кислород над энергией системы вода — диоксид углерода. [c.370]
    Для вытеснения органических кислот с анионообменных смол можно также использовать растворы кислот, и, хотя равновесие при этом иное (происходит ионизация кислот и связывание их анионов смолой), последовательность вымывания остается той же. Простые низкомолекулярные кислоты, например уксусная и молочная, вымываются первыми, затем идут дикарбоновые кислоты, а за ними трикарбоновые. В качестве вымывающего раствора используют уксусную кислоту [98] или подкисленные растворы хлористого кальция [991. Наиболее тщательные работы проведены с применением муравьиной кислоты при возрастающей концентрации ее до 100% (25 Л1) так удалось успешно вымыть с колонки 94 алифатические и ароматические кислоты [100]. Прежде применяли вымывание муравьиной кислотой для кислот цикла Кребса [101]. [c.225]

    Орнитин снова вступает в этот цикл превращений и через цитруллин и аргинин вновь образует мочевину. По данным Кребса, из всех исследованных органов только печень обладает способностью синтезировать мочевину при помощи вышеуказанного механизма орнитинового цикла. Процесс этот происходит только в аэробных условиях и требует сохранения клеточной структуры печеночной ткани, так как процесс синтеза мочевины сопряжен с одновременно протекающими реакциями, поставляющими энергию для синтеза. Это понятно, так как образование мочевины из аммиака и углекислоты является эндотермической реакцией, т. е. сопровождается поглощением энергии. Энергия, необходимая для синтеза мочевины, и доставляется в аэробных условиях сохранившими структуру клетками печени, окисляющими для этих целей подходящие субстраты (например, пировиноградную или молочную кислоту). [c.341]

    Приведенные цифры показывают, что эффективность превращения энергаи в каждой из этих систем довольно высокая по сравнению с бензиновым (25-30%) или паровым (8—12%) двигателями. Количество же энергаи, запасаемое в виде АТФ при аэробном дыхании, в 19 раз больше, чем при анаэробном (38 молекул АТФ на одну молекулу глюкозы в первом случае и 2 молекулы АТФ — во втором). С этой точки зрения аэробное дыхание значительно эффективнее анаэробного. Связано это с тем, что при анаэробном дыхании значительная часть энергии остается запертой в этаноле или молочной кислоте. Энергия, заключенная в этаноле, так и остается для дрожжей навсегда недоступной и, значит, спиртовое брожение в смысле получения энергаи — малоэффективный процесс. Из молочной же кислоты позднее может быть извлечено довольно большое количество энергии, если появится кислород. В присутствии кислорода молочная кислота превращается в печени в пировиноградную кислоту. Последняя поступает затем в цикл Кребса и полностью окисляется до СО2 и Н2О, в результате чего дополнительно образуется большое количество молекул АТФ. Возможен и другой путь — за счет энергии АТФ из пировиноградной кислоты может вновь образоваться глюкоза в процессе, который представляет собой обращение гликолиза. [c.352]


    У всех буферных систем крови преобладает основный (щелочной) компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты (пировиноградная и молочная - при распаде углеводов метаболиты цикла Кребса и Р-окисления жирных кислот кетоновые тела, угольная кислота и др.). Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг pH в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности. [c.113]

    При спиртовом брожении фермент декарбоксилаза декарбоксилирует пировиноградную кислоту в ацетальдегид, который восстанавливается в этанол за счет молекулы НАД-Нз, присоединившей в свое время водород при переходе VII в VIII. В анаэробном дыхании тот же восстановитель НАД-Нз восстанавливает пировиноградную кислоту в молочную. На пути от глюкозы до молочной кислоты освобождается 50 ккал молъ, из которых 16—20 ккал расходуется на образование 2 моль АТФ. В процессе дыхания с участием кислорода пировиноградная кислота, окисляясь кислородом в присутствии тиаминпирофосфата и коэнзима А (сокращенное обозначение КоА—SH), превращается в ацетилкоэнзим А, ацетильная группа которого окисляется далее в СОз и HgO по реакциям цикла Кребса (см. далее). [c.465]

    Барнетт и сотр. [150] описали методику применения ГЖХ для разделения и оценки количеств эфира пировиноградной кислоты, эфира молочной кислоты, эфира р-оксимасляной кислоты и некоторых промежуточных соединений цикла Кребса, содержащихся в тканях крыс. Для коррекции потерь каждого из этих веществ во время экстрагирования и хроматографирования в качестве внутреннего стандарта они использовали то же вещество, меченное изотопом С. Для этого хроматографически разделенные вещества собирали по выходе из колонки и измеряли их радиоактивность. Для определения фоновой радиоактивности колонки отбирали фракции в промежутках между выходом хроматографических полос компонентов смеси и измеряли их радиоактивность. Воспроизводимость результатов измерений определяли по экстракту из печени. Средний разброс этих результатов составлял 3—7%. [c.319]

    Хотя мы рассматриваем цикл Кребса как начальную фазу дыхания, молекулярны

www.chem21.info

Адипиновая кислота циклизация - Справочник химика 21

    Циклизация адипиновой кислоты в циклопентанон также сопровождается одновременной дегидратацией и декарбоксилированием  [c.718]

    Циклизация 1,6-дигалоидпроизводных металлами не имеет практической ценности. Методы, включающие реакции Гриньяра, полностью аналогичны получению этим путем циклопентановых углеводородо) . При пиролизе солей пимелиновых кислот образуются циклогексаноны приблизительно с такими же выходами, как при получении циклопентанонов из адипиновых кислот, при этом наблюдаются те же ограничения однако получать циклогексан этим путем невыгодно. [c.463]


    Циклы с числом звеньев меньше пяти сильно напряжены вследствие высокого углового напряжения, а именно, больших искажений их валентных углов по сравнению с тетраэдрическим, поэтому циклизация трех- и четырехчленных колец маловероятна. Наименьшую напряженность имеют шестичленные циклы. Возможно также образование пяти- и семичленных циклов. Наличие циклов с большим, числом звеньев (более 12) ранее считалось практически маловероятным, ввиду того, что их напряженность примерно равна напряженности линейных полимеров [9, с. 75]. Однако в последнее время было показано, что в зависимости от условий проведения равновесной поликонденсации диэтиленгликоля и адипиновой кислоты в отсутствие катализатора наблюдается образование макроциклов, характеризующихся распределением по молекулярным массам, величина которых изменяется от 200 до 1000 [18]. [c.161]

    Таким образом, в противоположность янтарной и глутаровой, адипиновая кислота вместо внутримолекулярной циклизации с образованием семичленного кольца претерпевает межмолекулярную реакцию [c.62]

    Циклизация а,ю-сложных диэфиров по Дикману [29] — важный метод получения сложных эфиров пяти- и шестичленных циклических оксокислот схема (17) , однако в других случаях эта реакция редко применима. Подобная циклизация может быть серьезной конкурентной реакцией ацилоиновой конденсации диэфиров адипиновой и пробковой кислот в том случае, если не [c.201]

    В 5-литровую круглодонную колбу, снабженную механической мешалкой, термометром и делительной воронкой емк. в 1 л, помещают 2100 г (16,6 мол.) 50%-ной азотной кислоты (уд. вес 1,32 в вытяжном шкафу). Кислоту нагревают почти до кипения и добавляют 1 г ванадата аммония (примечание 1). Пускают в ход мешалку и медленно через делительную воронку добавляют 500 г (5 мол.) цикло-гексанола (примечание 2). Сперва добавляют 40—50 капель цикло-гексанола и реакционную смесь размешивают до начала реакции (4—5 мин.), что становится заметным по выделению окислов азота (примечание 3). Затем реакционную колбу помещают в. баню со льдом и содержимое колбы охлаждают-до тех пор, пока температура смеси не достигнет 55—60°. После этого как можно скорее прибавляют циклогексанол, поддерживая температуру в пределах, указанных выше. К концу окисления (после того как прибавлено 475 г циклогексанола) ледяную баню удаляют иногда колбу приходится даже нагревать для того, чтобы поддерживать необходимую температуру и чтобы избежать циклизации адипиновой кислоты. [c.15]


    Адкинса катализатор см. Медь— хрома триоксид Аденилатциклаза циклизация АТФ 10, 152 Адипиновая кислота [c.197]

    Конденсация Дикмана. Для циклизации днэтилового эфира адипиновой кислоты в 2-карбэтоксициклопентанон использовали натрий, амид и этилат натрия. Пинкни [71 проводил реакцию с натрием прн 110—115° в течение 7 час п получил кетоэфир с выходом 74—81 %. Позднее Хинклен и др. [11 приливали сложный эфир к густой дисперсии Н. г. в толуоле при 45° и за 1,5 час получили препарат с выходом 65—80%. [c.394]

    Вольтер, Трейбс и Михаэлис [736] исследовали условия, при которых происходит линейная конденсация производных адипиновой кислоты в противовес процессам внутримолекулярной циклизации. [c.131]

    Наряду с указанными летучими продуктами при термоокислении ПКА (200 °С) были обнаружены [50] этанол и кетоны (ацетон и метилэтилкетон), по-видимому, также являющиеся продуктами превращения перекисных радикалов. Небольшие количества Нг и КНз образуются, вероятно, при термическом разложении без участия кислорода, а циклопентанон является продуктом термической циклизации адипиновой кислоты, которая может получаться при окислении ПКА. [c.33]

    Характер превраш ений, происходяш их при нагревании дикислот, решающим образом зависит от длины цепи, разделяющей карбоксильные группы. Циклизации обычно способствует возможность образования пяти- или шестичленных циклов. Так, адипиновая и пимелиновая кислоты декарбоксилируются и циклизуются в циклопентанон и циклогексанон соответственно [c.495]

    Таким образом, методом циклизации неизвестная конфигурация третичного асимметрического атома углерода коррелируется с известной конфигурацией вторичного атома углерода, и тем самым создается опора для определения конфигураций родственных соединений. Однако дигидрошикимовая кислота слишком сложное вещество для того, чтобы наглядно сопоставлять ее с другими соединениями, имеющими третичный асимметрический атом. Поэтому Фрейденберг превратил дигидрошикимовую кислоту (96) без затрагивания асимметрического центра в 3-карбокси-адипиновую кислоту и затем в З-метилгексан (схема 37). Каждый из переходов, который мы обозначили стрелкой, на самом деле потребовал выполнения многостадийных превращений без затрагивания конфигурации асимметрического центра однако, чтобы не отвлекать внимания от стереохимического результата, на деталях этих превращений мы останавливаться не будем. [c.137]

    Производные индоксила лучше вс

www.chem21.info

Полиакрилонитрил — Википедия

Структура полиакрилонитрила

Полиакрилонитрил (-CH2-CH(CN)-)n — полимер акрилонитрила, в промышленности используется полимер с молекулярной массой 30-100 кДа, плотностью 1.14-1.17 г/см3. Температура стеклования ~85-90 °C, разложения ~250 °C.

Полиакрилонитрил нерастворим в неполярных и малополярных растворителях (углеводороды, спирты), растворим в полярных апротонных растворителях (диметилформамиде, диметилсульфоксиде), водных растворах электролитов с высокой ионной силой (50-70 % растворах роданидов аммония, калия, натрия, бромида лития, хлорида цинка), с гидролизом нитрильной группы — в водных растворах сильных кислот.

Широко применяется в производстве прочных термически стойких волокон, а также в качестве сополимера в производстве дивинилнитрильного каучука.

Полиакрилонитрил в промышленности получают гомогенной (в водных растворах электролитов) либо гетерогенной (в водных эмульсиях) радикальной полимеризацией акрилонитрила.

При гомогенной полимеризации в качестве растворителя используют водные растворы хлорида цинка или роданида натрия, в качестве инициатора полимеризации чаще всего применяется 2,2'-азо-бис-изобутиронитрил. Скорость процесса существенно зависит от растворителя: так, если в водном растворе хлорида цинка длительность синтеза составляет 1—1,5 часа, то в диметилформамиде — 12—18 часов, растворители должны быть очищены от примесей, вызывающих обрыв цепи. Процесс ведут до степени конверсии мономера в 50—70 %, непрореагировавший акрилонитрил удаляют из реакционной смеси, при этом получается полимер с относительно узким молекулярно-массовым распределением.

Преимуществом гомогенной полимеризации является возможность непосредственного использования полученного раствора полиакрилонитрила для формирования полимерных волокон.

В случае гетерогенной полимеризации в качестве исходной реакционной смеси используется водная эмульсия акрилонитрила с содержанием 12—25 % мономера, в качестве инициатора полимеризации — персульфат аммония. Особенностью этого процесса, отличающего его от суспензионной полимеризации водонерастворимых мономеров (например, винилхлорида), является достаточно высокая растворимость акрилонитрила в воде (~7 %), что ведёт к тому, что в присутствии водорастворимого инициатора полимеризация идёт не только на поверхности капель мономера, но и в водном растворе. Это приводит к самоускорению процесса вплоть до степени конверсии ~20 % и образованию полимера с широким молекулярно-массовым распределением, полимеризацию завершают при степени конверсии акрилонитрила в 60—80 %, после чего полимер выделяется из суспензии, промывается и сушится.

По сравнению с гомогенным процессом при гетерогенной полимеризации получается полимер с более высокой средней молекулярной массой, при этом, за счет растворимости в акрилонитриле сомономеров, нерастворимых в условиях гомогенного процесса, можно более широко варьировать состав получаемых сополимеров.

Практически весь производимый полиакрилонитрил используется для получения полиакрилонитрильных волокон.

Полиакрилонитрильные волокна нитрон (в СССР), Orlon (DuPont), Dralon (Dralon GmbH) получают из полиакрилонитрила или из сополимеров акрилонитрила с другими виниловыми мономерами (метакрилатом, винилацетатом и др.). Волокна формуют из раствора сухим или мокрым способом. В основном нитрон вырабатывают в виде штапельного волокна.

Полиакрилонитрильные волокна обладают достаточно высокой прочностью (разрывное напряжение 250—400 МПа), которую можно увеличить при дополнительном вытягивании, и сравнительно большой растяжимостью (22—35 %). Благодаря низкой гигроскопичности эти свойства во влажном состоянии не изменяются.

Нитроновые волокна имеют максимальную светостойкость. В условиях комбинированного воздействия, солнечного света, дыма, копоти, воды, кислот и т. п., в которых гидратцеллюлозные волокна полностью разрушаются, полиакрилонитрильные волокна теряют прочность всего на 15 %. Эти волокна характеризуются также высокой термостойкостью: в процессе длительного выдерживания при температуре 120—130° С они практически не изменяют своих свойств.

К недостаткам полиакрилонитрильных волокон следует отнести их низкую гигроскопичность, сравнительно большую жесткость и малую устойчивость к истиранию.

Нитроновые волокна имеют шерстоподобный вид, низкую теплопроводность, показатели которой близки к теплопроводности шерсти. Они обладают инертностью к загрязнителям, поэтому изделия из них легко очищаются. Используются нитроновые волокна главным образом как заменители шерсти при производстве ковров, искусственного меха, как теплоизоляционный материал и добавка к шерстяным волокнам.

Для изменения свойств волокон используют различные методы модификации, в частности синтез сополимеров, синтез привитых сополимеров, формование из смеси полимеров. В результате модификации улучшается окрашиваемость, повышается гидрофильность, эластичность волокон, устойчивость их к истиранию и многократным деформациям.

Полиакрилонитриловое волокно также является сырьём для производства углеволокна путём окислительного пиролиза и стабилизации в инертном газе. Однако данный способ слабо оправдан экономически из-за дороговизны полиакрилонитрила, а также экологически - из-за выделения чрезвычайно токсичных веществ.[1]

Процесс проводят в две стадии: первая — нагрев на воздухе при 180—300°. При этом происходит поглощение кислорода и при температуре ~220 °C выделение воды и аммиака и далее при ~270 °C — синильной кислоты. В ходе этой стадии окислительного пиролиза происходит внутримолекулярная и межмолекулярная циклизация, в результате внутримолекулярной циклизации возникают участки полимера с лестничной структурой, межмолекулярная циклизация приводит к сшивке цепей линейного полимера с образованием черного пространственно-сшитого полимера, который, в отличие от исходного полиакрилонитрила, неплавок и нерастворим.

На второй стадии полученный в результате окислительного пиролиза сшитый полимер нагревают до 1000—2000 °C в среде инертного газа, получая углеволокно.

ru.wikipedia.org

2. Реакции гидроксильной группы – реакции элиминирования.

Эти реакции характерны для аминокислот, содержащих в радикале гидроксильную группу в β-положении по отношению к карбоксильной группе (серин и треонин).

В результате ряда последовательных реакций аминокислота превращается в кетокислоту. Рассмотрим этот процесс на примере превращения треонина в 2-оксобутановую кислоту.

3. Реакции гуанидильной группы.

Гуанидильная группа содержится в радикале аргинина:

Гуанидильная группа аргинина легко отщепляется при гидролизе в избытке гидроксида бария при 1000С с образованием мочевины и орнитина:

Орнитин α-аминокислота, содержащая в радикале вторую аминогруппу, в состав белков не входит. Появляется в организме в результате гидролитического расщепления аргинина с участием фермента аргиназы. Аргиназа в значительных количествах содержится в печени и в малых количествах в почках и селезенке млекопитающих животных.

Специфические реакции α-аминокислот

Присутствие у одного атома углерода двух функциональных групп (аминогруппы и карбоксильной) приводит к появлению специфических реакций.

1. Образование пептидов реакция ацилирования одной аминокислоты другой аминокислотой:

Затем дипептид присоединяет следующую молекулу аминокислоты, образуя трипептид, и так далее:

Подробно механизм образования пептидов и их номенклатуру мы рассмотрим ниже, в теме «Пептиды и белки».

2. Межмолекулярная циклизация образование дикето-пиперазинов.

При отщеплении двух молекул воды от двух молекул аминокислот образуется циклический дипептид  дикетопиперазин:

Реакции аминокислот in vivo

Простые аминокислоты, как и многие другие простые «биологические молекулы», не накапливаются в клетке: как правило, их избыток разрушается при помощи реакций, которые снабжают живую систему энергией. Три основные реакции, катализируемые ферментами, благодаря которым осуществляется превращение аминокислот в клетке, это реакции дезаминирования, переаминирования и декарбоксилирования.

1. Дезаминирование аминокислот

В организме дезаминирование может осуществляться как неокислительным, так и окислительным путём.

Неокислительное дезаминирование встречается, в основном, у бактерий и грибов. Например, превращение аспарагиновой кислоты в фумаровую под действием фермента аспартазы.

Окислительное дезаминирование  протекает при участии фермента оксидазы. Для того чтобы полностью прошла реакция окислительного дезаминирования, фермент, катализирующий эту реакцию, нуждается в окислительном (дегидрирующем) агенте. Обычно акцептором водорода в таких системах служит ФАД (флавинадениндинуклеотид), который затем переходит в восстановленную форму, сокращённо обозначаемую ФАД-Н2.

Окислительное дезаминирование осуществляется через стадию образования промежуточного имина.

Рассмотрим процесс превращения аланина в пировиноградную кислоту.

Реакции дезаминирования позволяют организму удалять избыток аминокислот, однако при этом повышается концентрация нежелательных азотистых веществ. Высокие концентрации аммиака и его производных токсичны для организма, который поэтому стремится освободиться от них, выделяя лишний азот в виде мочевины или мочевой кислоты.

Мочевая кислота образуется в организме взрослого человека в качестве побочного продукта. Высокое содержание мочевой кислоты приводит к мочекаменной болезни. Мочевая кислота в виде кристаллов мононатриевой соли образует камни в почках и в мочевом пузыре. Соли мочевой кислоты в суставах вызывают болезненные симптомы подагры  очень широко распространенного заболевания человека. Содержание мочевой кислоты и её солей в организме человека может представлять интерес с точки зрения эволюционной теории, поскольку большинство животных полностью разлагают мочевую кислоту до её выделения из организма. Было высказано предположение о том, что присутствие мочевой кислоты в организме человека предоставляет людям некоторое эволюционное преиму-щество. Эта гипотеза ещё не доказана, но она может быть интересным связующим звеном между биохимическими свойствами вещества и поведением живых организмов.

studfile.net


Смотрите также

Календарь мероприятий

Уважаемые родители и ребята, ждем вас на занятия со 2го сентября по расписанию. Расписание занятий Понедельник Среда Пятница Дети с 8-13 лет 16.50 - 18.15 16.50 - 18.15 16.50 -...
Итоги турнира: 1е место - Кравченков Сергей (Алтай), 2е место - Спешков Станислав(СПБ), 3е место - Набугорнов Николай (Алтай). Победители были награждены...

Новости

Поздравляем наших участников соревнования по кикбоксингу "Открытый кубок ГБОУ ДОД ДЮСШ Выборжанин"! Юрий Кривец и Давид Горнасталев - 1 место,...